Local Structure and Dynamics of Functional Materials Studied by X-ray Absorption Fine Structure
Abstract
:1. Introduction
2. Methods and Analysis
3. Local Structural Change in Phase Transitions in Perovskites and Magnetic Alloys
3.1. Structure Phase Transition in Perovskite-Type PbTiO3
3.2. Structure Phase Transition in FeRh and FeRhPd Magnetic Alloys
4. Study of Local Structures of Magnetic Alloys and Thin Films
4.1. Magnetic EXAFS for Ni3Mn Alloys
4.2. XAFS and XMCD Study for Cluster-Layered Fe/Cr Films
5. Structure Dynamics in Chemical Reaction Systems
5.1. Structural Disorder in Polyanion of Mo and W
5.2. Ligand Exchange Reaction in 3d Transition Metal Ions in Water
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sayers, D.; Stern, E.A.; Lytle, F. New Technique for Investigating Noncrystalline Structures: Fourier Analysis of the Extended X-ray-Absorption Fine Structure. Phys. Rev. Lett. 1971, 27, 1204–1207. [Google Scholar] [CrossRef]
- Lytle, F.W. The EXAFS family tree: A personal history of the development of extended X-ray absorption fine structure. J. Synchrotron Radiat. 1999, 6, 123–134. Available online: http://www.exafsco.com/techpapers/ (accessed on 8 July 2021). [CrossRef] [PubMed] [Green Version]
- Sawada, M.; Tsutsumi, K.; Shiraiwa, T.; Obashi, M. On the Fine Structures of X-ray Absorption Spectra of Amorphous Substances The Amorphous State of the Binary System of Nickel-Sulfur. II. J. Phys. Soc. Jpn. 1955, 10, 464–468. [Google Scholar] [CrossRef]
- Schnohr, C.S.; Ridgway, M.C. (Eds.) X-ray Absorption Spectroscopy of Semiconductors; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Bunker, G. Introduction to XAFS; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Fornasini, P. Synchrotron Radiation: Basics, Methods and Applications; Mobilio, S., Boscherini, F., Meneghini, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 181–211. [Google Scholar]
- Stöhr, J. NEXAFS Spectroscopy; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Hatada, K.; Hayakawa, K.; Benfatto, M.; Natoli, C.R. Full-potential multiple scattering for x-ray spectroscopies. Phys. Rev. B 2007, 76, 060102. [Google Scholar] [CrossRef] [Green Version]
- Bunker, G. Application of the ratio method of EXAFS analysis to disordered systems. Nucl. Instrum. Methods Phys. Res. 1983, 207, 437–444. [Google Scholar] [CrossRef]
- Miyanaga, T.; Fujikawa, T. XAFS Spectroscopy: Basic theory and recent developments. J. Spectrosc. Dyn. 2011, 1, 4. [Google Scholar]
- Kuroiwa, Y.; Aoyagi, S.; Sawada, A.; Harada, J. Evidence for Pb-O covalency in tetragonal PbTiO3. Phys. Rev. Lett. 2001, 87, 217601. [Google Scholar] [CrossRef] [PubMed]
- Miyanaga, T.; Sato, K.; Ikeda, S.; Diop, D. Structural Phase Transition in PbTiO3 from Local Point of View. Recent Res. Dev. Phys. Transw. Res. Netw. Part II 2002, 3, 641–657. [Google Scholar]
- Miyanaga, T.; Diop, D.; Ikeda, S.; Kon, H. Study of the Local Structure Changes in PbTiO3 by Pb LIII EXAFS. Ferroelectrics 2002, 274, 41–53. [Google Scholar] [CrossRef]
- Miyanaga, T.; Itoga, T.; Okazaki, T.; Nitta, K. Local structural change under antiferro-and ferromagnetic transition in FeRh alloy. J. Phys. Conf. Ser. 2009, 190, 012097. [Google Scholar] [CrossRef] [Green Version]
- Zverev, V.I.; Saletsky, A.M.; Gimaev, R.R.; Tishin, A.M.; Miyanaga, T.; Stanton, J.B. Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6. Appl. Phys. Lett. 2016, 108, 192405. [Google Scholar] [CrossRef] [Green Version]
- Wakisaka, Y.; Uemura, Y.; Yokoyama, T.; Asakura, H.; Morimoto, H.; Tabuchi, M.; Ohshima, D.; Kato, T.; Iwata, S. Anomalous structural behavior in the metamagnetic transition of FeRh thin films from a local viewpoint. Phys. Rev. B 2015, 92, 184408. [Google Scholar] [CrossRef]
- Komlev, A.S.; Karpenkov, D.Y.; Gimaev, R.R.; Chirkova, A.; Akiyama, A.; Miyanaga, T.; Hupalo, M.F.; Aguiar, D.J.M.; Carvalho, A.M.G.; Jiménez, M.J.; et al. Coupling of magnetic and structural properties in palladium-doped FeRh alloys. to be submitted.
- Miyanaga, T.; Okazaki, T.; Maruko, R.; Takegahara, K.; Nagamatsu, S.; Fujikawa, T.; Kon, H.; Sakisaka, Y. Magnetic X-ray Absorption Fine Structure for Ni-Mn Alloys. J. Synchrotron Rad. 2003, 10, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Miyanaga, T.; Ogasawara, T.; Okazaki, T.; Sakisaka, Y.; Okamoto, K.; Nagamatsu, S.; Fujikawa, T. Local magnetic structures of Ni-Mn alloys in ordered and disordered states studied by magnetic XAFS. J. Magn. Magn. Mater. 2007, 310, e601–e603. [Google Scholar] [CrossRef]
- Okazaki, T.; Miyanaga, T.; Sakisaka, Y.; Sugimoto, S.; Yamada, K.; Honda, Z. GMR and soft magnetic properties of Ni-Mn alloys with dispersed ferromagnetic nano particles. Rev. Adv. Mater. Sci. 2004, 6, 150–161. [Google Scholar]
- Baibich, M.N.; Broto, J.M.; Fert, A.; Nguyen Van Dau, F.; Petroff, F.; Eitenne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988, 61, 2472–2475. [Google Scholar] [CrossRef] [Green Version]
- Parkin, S.S.P.; More, N.; Roche, K.P. Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory. Phys. Rev. Lett. 1990, 64, 5852. [Google Scholar] [CrossRef]
- Sefrioui, Z.; Mendez, J.L.; Navarro, E.; Cebollada, A.; Briones, F.; Crespo, P.; Hernando, A. Correlation between magnetic and transport properties in nanocrystalline Fe thin films: A grain-boundary magnetic disorder effect. Phys. Rev. B 2001, 64, 224431. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, A.K.; Hebard, A.F.; Singh, A.; Temple, D. Extraordinary Hall effect in Fe-Cr giant magnetoresistive multilayers. Phys. Rev. B 2003, 68, 144405. [Google Scholar] [CrossRef] [Green Version]
- Almeida, B.G.; Sousa, J.B.; Schad, R.; Moshchalkov, V.V.; Bruynseraede, Y. Phonon-assisted sd electron scattering in Fe/Cr multilayers. J. Magn. Magn. Mater. 1996, 157/158, 730–732. [Google Scholar] [CrossRef]
- Ustinov, V.V.; Romashev, L.N.; Milayev, M.A.; Korolev, A.V.; Krinitsina, T.P.; Burkhanov, A.M. Kondo-like effect in the resistivity of superparamagnetic cluster-layered Fe/Cr nanostructures. J. Magn. Magn. Mater. 2006, 300, 148–152. [Google Scholar] [CrossRef]
- Miyanaga, T.; Ikeda, Y.; Hasunuma, Y.; Ponomarev, D.; Grebennikov, V.; Babanov, Y.A. Local Magnetic Study for Cluster-Layered Fe/Cr Nanostructures. J. Phys. Conf. Ser. 2019, 1389, 012146. [Google Scholar] [CrossRef]
- Miyanaga, T.; Fujikawa, T.; Matsubayashi, N.; Fukumoto, T.; Yokoi, K.; Watanabe, I.; Ikeda, S. Anomalous Peak Intensities in the EXAFS of Polynuclear Molybdenum Compounds. Bull. Chem. Soc. Jpn. 1989, 62, 1791–1796. [Google Scholar] [CrossRef]
- Furuta, S.; Miyanaga, T.; Watanabe, I. An abnormally large EXAFS Debye-Waller factor for a Mo-O bond in hexamolybdate. AIP Conf. Proc. 2007, 882, 141–143. [Google Scholar] [CrossRef]
- Yan, L.; Lopez, X.; Carbo, J.J.; Sniatynsky, R.; Duncan, D.C.; Poblet, J.M. On the Origin of Alternating Bond Distortions and the Emergence of Chirality in Polyoxometalate Anions. J. Am. Chem. Soc. 2008, 130, 8223–8233. [Google Scholar] [CrossRef] [PubMed]
- Miyanaga, T.; Sakane, H.; Watanabe, I. EXAFS Debye–Waller Factor and Ligand Exchange Reaction of Hydrated Metal Complexes. Bull. Chem. Soc. Jpn. 1995, 68, 819–824. [Google Scholar] [CrossRef]
- Miyanaga, T.; Sakane, H.; Watanabe, I. Anharmonic Potential Derived from EXAFS of Hexaaqua Transition Metal Complexes. Phys. Chem. Chem. Phys. 2000, 2, 2361–2365. [Google Scholar] [CrossRef]
- Akesson, R.; Pettersson, L.G.M.; Sandstrom, M.; Wahlgren, U. Theoretical Study on Water-Exchange Reactions of the Divalent and Trivalent Metal Ions of the First Transition Period. J. Am. Chem. Soc. 1994, 116, 8705–8713. [Google Scholar] [CrossRef]
Anneal (h) | Magnetization (emu/g) | LRO | Ratio Mn/Ni |
---|---|---|---|
50 | 50.0 | 0.44 | 3.5 |
100 | 56.4 | 0.55 | 4.3 |
500 | 85.9 | 0.78 | 5.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyanaga, T. Local Structure and Dynamics of Functional Materials Studied by X-ray Absorption Fine Structure. Symmetry 2021, 13, 1315. https://doi.org/10.3390/sym13081315
Miyanaga T. Local Structure and Dynamics of Functional Materials Studied by X-ray Absorption Fine Structure. Symmetry. 2021; 13(8):1315. https://doi.org/10.3390/sym13081315
Chicago/Turabian StyleMiyanaga, Takafumi. 2021. "Local Structure and Dynamics of Functional Materials Studied by X-ray Absorption Fine Structure" Symmetry 13, no. 8: 1315. https://doi.org/10.3390/sym13081315
APA StyleMiyanaga, T. (2021). Local Structure and Dynamics of Functional Materials Studied by X-ray Absorption Fine Structure. Symmetry, 13(8), 1315. https://doi.org/10.3390/sym13081315