Wave-Like Exact Models with Symmetry of Spatial Homogeneity in the Quadratic Theory of Gravity with a Scalar Field
Abstract
:1. Introduction
2. Quadratic Gravity with Scalar Field
3. Wave-Like Shapovalov Spaces
4. Spatially Homogeneous Models of Shapovalov Spaces
4.1. Spatially Homogeneous Wave-Like Model Type II-B1
4.2. Spatially Homogeneous Wave-Like Model Type B2
5. Shapovalov Spacetimes II-B1 Type
5.1. Spacetimes II-B1 Type. Scalar Field Depends on Ignored Variables
5.1.1. Spacetimes II-B1 Type, Case
5.1.2. Solution for Spacetimes II-B1 Type for ,
5.2. Spacetimes II-B1 Type. Scalar Field Depends on Non-Ignored Variables Only
6. Shapovalov Spacetimes II-B2 Type
6.1. Exact Solution for Model II-B2 in Case
6.2. Exact Solution for the Model Subtype II-B2 in the Case When the Scalar Field Depends Only on Non-Ignored Variables ()
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Boulware, D.; Deser, S. String-generated gravity models. Phys. Rev. Lett. 1985, 55, 2656–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, R.; Saha, D.; Alam, M.; Sanyal, A.; Deser, S. Early Universe in view of a modified theory of gravity. Class. Quantum Gravity 2021, 38. [Google Scholar] [CrossRef]
- Fomin, I. Gauss—Bonnet term corrections in scalar field cosmology. Eur. Phys. J. C 2020, 80. [Google Scholar] [CrossRef]
- Starobinskii, A. Spectrum of relict gravitational radiation and the early state of the Universe. JETP Lett. 1979, 30, 682–685. [Google Scholar] [CrossRef]
- Guth, A. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Odintsov, S. Inflationary cosmology in modified gravity theories. Symmetry 2015, 7, 220–240. [Google Scholar] [CrossRef] [Green Version]
- Ivashchuk, V.; Kobtsev, A. On exponential cosmological type solutions in the model with Gauss-Bonnet term and variation of gravitational constant. Eur. Phys. J. C 2015, 75. [Google Scholar] [CrossRef] [Green Version]
- Ivashchuk, V. On stable exponential solutions in Einstein-Gauss-Bonnet cosmology with zero variation of G. Gravit. Cosmol. 2016, 22, 329–332. [Google Scholar] [CrossRef] [Green Version]
- Camci, U. F(R,G) Cosmology through Noether symmetry approach. Symmetry 2018, 10, 719. [Google Scholar] [CrossRef] [Green Version]
- Bajardi, F.; Dialektopoulos, K.; Capozziello, S. Higher dimensional static and spherically symmetric solutions in extended Gauss-Bonnet gravity. Symmetry 2020, 12, 372. [Google Scholar] [CrossRef] [Green Version]
- Herdeiro, C.; Radu, E.; Tchrakian, D. Embedding Gauss—Bonnet scalarization models in higher dimensional topological theories. Symmetry 2021, 13, 590. [Google Scholar] [CrossRef]
- Buoninfante, L.; Lambiase, G.; Petruzziello, L.; Stabile, A. Casimir effect in quadratic theories of gravity. Eur. Phys. J. C 2019, 79. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.; Oikonomou, V. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Heckmann, O.; Schucking, E. Newtonsche und Einsteinsche Kosmologie. In Handbuch Der PHYSIK; Springer: Berlin, Germany, 1959; Volume 53, pp. 489–519. [Google Scholar]
- Khalatnikov, I.; Kamenshchik, A. A generalisation of the Heckmann-Schucking cosmological solution. Phys. Lett. B 2003, 553, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Wainwright, J.; Ellis, G. (Eds.) Dynamical Systems in Cosmology; Cambridge University Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Jana, S.; Dalang, C.; Lombriser, L. Horndeski theories and beyond from higher dimensions. Class. Quantum Gravity 2021, 38. [Google Scholar] [CrossRef]
- Odintsov, S.; Oikonomou, V.; Fronimos, F. Canonical scalar field inflation with string and R2-corrections. Ann. Phys. 2021, 424. [Google Scholar] [CrossRef]
- Oikonomou, V.; Fronimos, F.P. Non-minimally coupled Einstein–Gauss–Bonnet gravity with massless gravitons: The constant-roll case. Eur. Phys. J. Plus 2020, 135. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E. Shapovalov wave-like spacetimes. Symmetry 2020, 12, 1372. [Google Scholar] [CrossRef]
- Shapovalov, V. Symmetry and separation of variables in Hamilton-Jacobi equation. I. Sov. Phys. J. 1978, 21, 1124–1129. [Google Scholar] [CrossRef]
- Shapovalov, V. Symmetry and separation of variables in Hamilton-Jacobi equation. II. Sov. Phys. J. 1978, 21, 1130–1132. [Google Scholar] [CrossRef]
- Shapovalov, V. The Stäckel spaces. Sib. Math. J. 1979, 20, 790–800. [Google Scholar] [CrossRef]
- Osetrin, K.; Filippov, A.; Osetrin, E. The spacetime models with dust matter that admit separation of variables in Hamilton-Jacobi equations of a test particle. Mod. Phys. Lett. A 2016, 31. [Google Scholar] [CrossRef] [Green Version]
- Osetrin, E.; Osetrin, K. Pure radiation in space–time models that admit integration of the eikonal equation by the separation of variables method. J. Math. Phys. 2017, 58. [Google Scholar] [CrossRef]
- Obukhov, V.; Osetrin, K.; Filippov, A. Metrics of homogeneous spaces admitting (3.1)-type complete sets. Russ. Phys. J. 2002, 45, 42–48. [Google Scholar] [CrossRef]
- Obukhov, V. Hamilton-Jacobi equation for a charged test particle in the Stäckel space of type (2.0). Symmetry 2020, 12, 1289. [Google Scholar] [CrossRef]
- Obukhov, V. Integration of the Hamilton–Jacobi and Maxwell Equations in Diagonal Metrics of Stäckel Spaces. Russ. Phys. J. 2020, 63, 1126–1132. [Google Scholar] [CrossRef]
- Obukhov, V. Separation of variables in Hamilton-Jacobi equation for a charged test particle in the Stäckel spaces of type (2.1). Int. J. Geom. Methods Mod. Phys. 2020, 17. [Google Scholar] [CrossRef]
- Obukhov, V. Separation of variables in Hamilton-Jacobi and Klein-Gordon-Fock equations for a charged test particle in the Stäckel spaces of type (1.1). Int. J. Geom. Methods Mod. Phys. 2021, 18. [Google Scholar] [CrossRef]
- Obukhov, V. Algebra of symmetry operators for Klein-Gordon-Fock equation. Symmetry 2021, 13, 727. [Google Scholar] [CrossRef]
- Bagrov, V.; Obukhov, V.; Osetrin, K. Classification of null-Stäckel electrovac metrics with cosmological constant. Gen. Relativ. Gravit. 1988, 20, 1141–1154. [Google Scholar] [CrossRef]
- Osetrin, K.; Filippov, A.; Osetrin, E. Models of Generalized Scalar-Tensor Gravitation Theories with Radiation Allowing the Separation of Variables in the Eikonal Equation. Russ. Phys. J. 2018, 61, 1383–1391. [Google Scholar] [CrossRef]
- Osetrin, E.; Osetrin, K.; Filippov, A. Spatially Homogeneous Models Stäckel Spaces of Type (2.1). Russ. Phys. J. 2020, 63, 410–419. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osetrin, K.; Kirnos, I.; Osetrin, E.; Filippov, A. Wave-Like Exact Models with Symmetry of Spatial Homogeneity in the Quadratic Theory of Gravity with a Scalar Field. Symmetry 2021, 13, 1173. https://doi.org/10.3390/sym13071173
Osetrin K, Kirnos I, Osetrin E, Filippov A. Wave-Like Exact Models with Symmetry of Spatial Homogeneity in the Quadratic Theory of Gravity with a Scalar Field. Symmetry. 2021; 13(7):1173. https://doi.org/10.3390/sym13071173
Chicago/Turabian StyleOsetrin, Konstantin, Ilya Kirnos, Evgeny Osetrin, and Altair Filippov. 2021. "Wave-Like Exact Models with Symmetry of Spatial Homogeneity in the Quadratic Theory of Gravity with a Scalar Field" Symmetry 13, no. 7: 1173. https://doi.org/10.3390/sym13071173
APA StyleOsetrin, K., Kirnos, I., Osetrin, E., & Filippov, A. (2021). Wave-Like Exact Models with Symmetry of Spatial Homogeneity in the Quadratic Theory of Gravity with a Scalar Field. Symmetry, 13(7), 1173. https://doi.org/10.3390/sym13071173