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Abstract: Exact solutions are obtained in the quadratic theory of gravity with a scalar field for
wave-like models of space–time with spatial homogeneity symmetry and allowing the integration
of the equations of motion of test particles in the Hamilton–Jacobi formalism by the method of
separation of variables with separation of wave variables (Shapovalov spaces of type II). The form of
the scalar field and the scalar field functions included in the Lagrangian of the theory is found. The
obtained exact solutions can describe the primary gravitational wave disturbances in the Universe
(primary gravitational waves).

Keywords: quadratic theory of gravity; cosmology; gravitational waves; scalar field; cosmological
constant; homogeneous spaces; Hamilton–Jacobi equation; killing fields; Shapovalov spaces

1. Introduction

The task of this work is to construct exact models of primary gravitational wave
disturbances of the Universe on the basis of quadratic theories of gravity with a scalar
field in space–time models with symmetry of spatial homogeneity. Curvature–quadratic
scalar-field theories of gravity usually arise as consequences in models of quantum gravity,
string theory and M-theories as modifications of general relativity (GR) [1]. They have
a number of interesting properties (renormalizability, inflation) and can claim a more
realistic description of the initial stages of the development of the Universe in comparison
with general relativity [2,3]. It should be noted that, historically, the first inflationary
model [4] was built not on the basis of the theory of gravity, quadratic in curvature, but
on models with a scalar field—an “inflaton” (the development of which began after the
work of [5]). For this reason, the properties of the inflaton are sufficiently well studied and
it seems unjustified to abandon it, so we include the terms describing the scalar field in the
Lagrangian along with the terms that are quadratic in curvature.

A review of theories of this kind and their comparison with cosmographic tests are
given in the work [6]. A large survey of theories with Lagrangians, nonlinear in curvature
and containing the Gauss–Bonnet invariant, is given in the papers [7,8], and a number of
solutions were obtained in works [9–14]. Theories with Lagrangians of the form f (ϕ, R),
and their relationship with inflation and modern accelerated expansion, are considered in
the work [15].

To describe the early stages of the development of the Universe, spatially homoge-
neous non-isotropic space–time models are considered to be more realistic models than the
homogeneous and isotropic Friedman–Robertson–Walker models, especially since in many
models [16,17], anisotropy decreases with time, and space becomes isotropic [18].

The description of primary gravitational perturbations (primary gravitational waves)—
the occurrence of which is predicted at the early (quantum) stages of the development of
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the Universe—requires the use of adequate mathematical methods to describe such wave
models of space–time. It should be noted that it is not in all theories of this kind that the
speed of a gravitational wave and the speed of light in a vacuum coincide. Meanwhile,
the gravitational wave burst GW170817, associated with the merger of neutron stars, was
accompanied by electromagnetic radiation and the burst of electromagnetic radiation came
a little later, which is associated with the physics of the process and, in addition, with the
delay of electromagnetic radiation by the interstellar medium. Thus, we can assume that in
a vacuum the velocities of gravitational and electromagnetic waves coincide. The question
of the resulting restrictions on the form of the Lagrangian of a theory that is quadratic in
curvature is studied in the papers [19–21].

We propose the use of spatially homogeneous wave-like Shapovalov spaces as ade-
quate mathematical models for the considered physical problems [22]. These spaces allow
for the existence of ”privileged” coordinate systems, where complete separation of wave
variables in the equations of the motion of test particles in the Hamilton–Jacobi formalism
is possible, on which the metric of space–time explicitly depends in privileged coordinate
systems (wave-like spaces).

2. Quadratic Gravity with Scalar Field

We will consider a quadratic theory of gravity with a scalar field ϕ, the Lagrangian of
which has the form (see f.e. [2]):

L =
R + γ(ϕ)R2

2κ2 − ξ(ϕ)G − 1
2

ωgµν∂µ ϕ∂ν ϕ−V(ϕ) + LMatter, (1)

where R is the scalar curvature, κ is the gravitational constant, γ(ϕ) and ξ(ϕ) are scalar
field functions, V(ϕ) is the potential of the scalar field, G is the Gauss–Bonnet term, ω is a
constant, LMatter - Lagrangian of material fields.

The quadratic theory of gravity with Lagrangian (1) gives us the following field
equations:

Qµν =
1
κ2

[
(1 + 2γR)Rµν + 2

(
gµν�(γR)−∇µ∇ν(γR)

)
− R + γR2

2
gµν

]
− 8∇γ∇β

[
ξR γ β

µ ν

]
− 8∇γ∇µ[ξRγ

ν]− 8∇γ∇ν

[
ξRγ

µ

]
+ 8gµν∇γ∇β

[
ξRγβ

]
+ 4∇µ∇ν[ξR]− 4�[ξR]gµν + 8�

[
ξRµν

]
+ 4ξ

(
4RµγRν

γ − RRµν − RµαβγRν
αβγ
)

+ (ω/2) gµνgγβ∂γ ϕ∂β ϕ−ω∂µ ϕ∂ν ϕ + gµν(V + ξG) = Tµν, (2)

and the equation for the scalar field ϕ takes the form

ω�ϕ +
R2

2κ2 γ′(ϕ)− Gξ ′(ϕ)−V′(ϕ) = 0, (3)

where ∇ is the covariant derivative, � is the d’Alembert operator, and the prime means
the derivative with respect to the scalar field ϕ.

3. Wave-Like Shapovalov Spaces

Wave-like Shapovalov spaces [22] arise as a subset of the Stäckel spaces [23–25],
admitting the existence of privileged coordinate systems, where the equation of the motion
of test particles in the Hamilton–Jacobi formalism,

gijS,iS,j = m2, (4)
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can be integrated in quadratures by the method of complete separation of variables. Here,
gij is the space–time metric, S is the test particle action function, m is the test particle mass.

Shapovalov spaces, by definition [22], allow the separation of non-ignored ”wave”
variables (on which the metric depends) along which the space–time interval is equal to
zero. The ability to separate the wave variables on which the metric depends allows us to
consider these space–time models as “wave-like”.

Note that, since the motion of test particles in space–time is carried out along geodesic
lines, then the Stäckel and Shapovalov spaces admit integration in quadratures of the
geodesic equations. The ability to accurately integrate the equations of motion of test
particles makes Stäckel spaces an important tool in gravity problems, including modified
theories. We also investigated both the general properties of Stäckel spaces with dust
matter [26] and radiation [27], and spatially homogeneous models of Stäckel spaces that
are of interest for cosmology [28].

Recently, a number of new results have been obtained for the classes of spaces that
allow integration by the method of separation of variables in the Hamilton–Jacobi equation
for charged test particles and in the Klein–Gordon–Fock equation for scalar and electro-
magnetic fields [29–33].

On the basis of the Steckel and Shapovalov spaces, a number of exact models have
been built both for the general theory of relativity (see f.e. [34] ) and for modified theories
of gravity (see f.e. [35] ).

In four-dimensional space–time, there are three classes of Shapovalov spaces according
to the dimension of the Abelian group of motions they admit [22]. Type I Shapovalov
spaces admit one Killing vector and the metric of this space in a privileged coordinate
system depends on three ”non-ignored” variables, including the ”wave ” variable. Type
II spaces admit two commuting Killing vectors and its metric in a privileged coordinate
system depends on two “non-ignored” variables, including the “wave” variable. Finally,
the metric of the type III Shapovalov space in the privileged coordinate system depends on
only one wave variable.

In this paper, we will consider Type II Shapovalov spacetimes admitting two commut-
ing Killing vectors.

4. Spatially Homogeneous Models of Shapovalov Spaces

In this paper, we will consider spatially homogeneous wave models of space–time to
describe primary gravitational perturbations. For Shapovalov’s wave-like spacetimes to be
spatially homogeneous, it is necessary that they admit three-parameter groups of motion
with space-like orbits. As we showed earlier [36], for Shapovalov spaces of type II there are
two types of spatially homogeneous models—subtypes B1 and B2.

4.1. Spatially Homogeneous Wave-Like Model Type II-B1

The metric for the space–time model of type B1 has the form (see [36]):

ds2 =
1

x32

(
2 dx0dx1 + (x0 − α)1−β(x0 + α)1+β dx22

+ dx32
)

, (5)

where x0 is an isotropic (wave) variable, α and β are constants (α 6= 0, β 6= ±1).

g = det gij =−
(x0 − α)1−β(α + x0)β+1

x38 , x0 > |α|.

Killing vector fields of model type B1 in a privileged coordinate system can be selected
in the form:

X0 = ∂1, X1 = ∂2, X2 = 2 x1∂1 + x2∂2 + x3∂3, (6)

X3 = (x02 − α2)∂0 −
x32

2
∂1 + αβx2∂2 + x0x3∂3. (7)
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Killing vectors X1, X2, X3 define a subgroup of spatial homogeneity of the model.
Killing vector commutators of model type B1 have the form:

[X0, X1] = 0, [X0, X2] = 2X0, [X0, X3] = 0, (8)

[X1, X2] = X1, [X1, X3] = αβX1, [X2, X3] = 0. (9)

For αβ = 0, this space admits a third commuting Killing vector and degenerates into a
space with one non-ignored variable only (in the privileged coordinate system).

The Riemann tensor Rijkl , the Ricci tensor Rij and the scalar curvature R have the
following nonzero components:

R0313 = − 1

x34 , R0212 = R2323 = − (x0 − α)1−β(x0 + α)1+β

x34 , (10)

R0202 =
α2(1− β2)(x0 − α)−1−β(x0 + α)−1+β

x32 , (11)

R00 =
α2(1− β2)

(x02 − α2)2
, R01 = R33 = − 3

x32 , (12)

R22 = −3 (x0 − α)1−β(x0 + α)1+β

x32 , R = −12. (13)

If α 6= 0 and β 6= ±1, the resulting solution cannot be conformally flat, since the two
components of the Weyl tensor Cijkl are not equal to zero:

C0202 =
α2(1− β2)(x0 − α)−β−1(x0 + α)β−1

2x32 , (14)

C0303 =
−α2(1− β2)

2x32(x0 − α)2(x0 + α)2
. (15)

If α = 0 or β = 0,±1, the metric of the model type B1 degenerates—in a privileged
coordinate system it depends on one variable only.

The model B1 is of type III according to the Bianchi classification and has the type N
according to the Petrov classification.

4.2. Spatially Homogeneous Wave-Like Model Type B2

The space–time interval for a type B2 model can be written as (see [36]):

ds2 =
1

x32

(
2 dx0dx1 + x0α

dx22
+ dx32

)
, (16)

where x0 is an isotropic (wave) variable, and α is a constant.

g = det gij =− x0α
/x38

, x0 > 0.

Independent Killing vector fields in a privileged coordinate system can be selected in
the form:

X0 = ∂1, X1 = ∂2, X2 = 2 x1∂1 + x2∂2 + x3∂3, (17)

X3 = x0∂0 +
1− α

2
x2∂2 +

x3

2
∂3. (18)

Killing vectors X1, X2, X3 define a subgroup of spatial homogeneity of the model.
Killing vector commutators of model type B2 have the form:

[X0, X1] = 0, [X0, X2] = 2X0, [X0, X3] = 0, (19)
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[X1, X2] = X1, [X1, X3] =
1− α

2
X1, [X2, X3] = 0. (20)

For α = 1, this space admits an additional commuting Killing vector and degenerates
into a space with one non-ignored variable.

The Riemann tensor Rijkl , the Ricci tensor Rij and the scalar curvature R have the
following nonzero components:

R0101 = −R0313 =
1

x34 , R0212 = R2323 = − x0α

x34 , R0202 =
α(2− α)

4x32x0(2−α)
, (21)

R01 = R33 = − 3

x32 , R22 = −3x0α

x32 , R00 =
α(2− α)

4x02 , R = −12. (22)

If α 6= 0 or α 6= 2, the resulting solution cannot be conformally flat, since the two
components of the Weyl tensor Cijkl are not equal to zero:

C0202 = −α (α− 2)x0(α−2)

8x32 , C0303 =
α (α− 2)

8x02x32 . (23)

If α = 0 or α = 2, the Weyl tensor vanishes (conformally flat space), but the Ricci
tensor, scalar curvature and the Riemann curvature tensor do not vanish. If α = 0, 1, 2, the
metric of the model type B2 degenerates—in a privileged coordinate system it depends on
one variable only.

This spatially homogeneous space–time model is of type III according to the Bianchi
classification and has type N according to the Petrov classification.

5. Shapovalov Spacetimes II-B1 Type

For the metric of the spatially homogeneous Shapovalov model of type II-B1, we write
the explicit form of the field equations in vacuum (Tαβ = 0):

E00 =
1
κ2

[
α2(β2 − 1

)
(24γ− 1)(

x02 − α2
)2 + 24

(
ϕ,0

2γ′′ + ϕ,00γ′
)]

− 1

(α2 − x02)
3

{
8α2
(

β2 − 1
)

x32
(α2 − x02

)ϕ,3
2ξ ′′

+ 8
[
(αβ− x0)

((
x02 − α2

)2
(−ϕ,0)− α2

(
β2 − 1

)
x32

ϕ,1

)
(24)

+ α2
(

β2 − 1
)

x32
(α2 − x02

)ϕ,33

+ α2
(

β2 − 1
)

x3(α2 − x02
)ϕ,3 +

(
α2 − x02

)3
ϕ,00

]
ξ ′

+ 8α2
(

β2 − 1
)
(α2 − x02

)ξ +
(

α2 − x02
)3

ϕ,0
2(8ξ ′′ + ω

)}
= 0,
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E01 = −x3
[
−x3

{(
α2 − x02

)
(α + x0)β ϕ,3

2
(
κ2(16ξ ′′ + ω

)
− 48γ′′

)
− 16

(
α2 − x02

)
(α + x0)β ϕ,1 ϕ,0

(
3γ′′ −κ2ξ ′′

)
+ (x0 − α)β ϕ,2

2
(
−
(
κ2(16ξ ′′ + ω

)
− 48γ′′

))}
− 48(α + x0)β

[(
α2 − x02

)(
ϕ,3 − x3 ϕ,33

)
− x3

(((
α2 − x02

)
ϕ,01 + (αβ− x0)ϕ,1

)
− ϕ,22

)]
γ′ (25)

+ 16κ2
{
−x3

(
−(x0 − α)β ϕ,22 +

(
α2 − x02

)
(α + x0)β ϕ,33

+ (α + x0)β
((

α2 − x02
)

ϕ,01 + 2(αβ− x0)ϕ,1

))
+ 2

(
α2 − x02

)
(α + x0)β ϕ,3

}
ξ ′
]

+ 2κ2
(

α2 − x02
)
(α + x0)β(60ξ + υ) = 0,

E02 = 24
((

α2 − x02
)

ϕ,02 + (x0 − αβ)ϕ,2

)
γ′

− 8κ2
((

α2 − x02
)

ϕ,02 + (x0 − αβ)ϕ,2

)
ξ ′ (26)

−
(

α2 − x02
)

ϕ,2 ϕ,0

(
κ2(8ξ ′′ + ω

)
− 24γ′′

)
= 0,

E03 =
1
x3

{
24
κ2

(
x3 ϕ,3 ϕ,0γ′′ +

(
ϕ,0 + x3 ϕ,03

)
γ′
)

− 1(
x02 − α2

)2

[
x3 ϕ,3

{
8
((

x02 − α2
)2

ϕ,0 − α2
(

β2 − 1
)

x32
ϕ,1

)
ξ ′′ (27)

+ ω
(

x02 − α2
)2

ϕ,0

}
+ 8
((

x02 − α2
)2(

ϕ,0 + x3 ϕ,03

)
− α2

(
β2 − 1

)
x32
(

x3 ϕ,13 − ϕ,1

))
ξ ′
]}

= 0,

E11 = 8ϕ,11

(
3γ′ −κ2ξ ′

)
− ϕ,1

2
[
κ2(8ξ ′′ + ω

)
− 24γ′′

]
= 0, (28)

E12 = 8ϕ,12

(
3γ′ −κ2ξ ′

)
− ϕ,1 ϕ,2

[
κ2(8ξ ′′ + ω

)
− 24γ′′

]
= 0, (29)

E13 = 24
(

ϕ,1 + x3 ϕ,13

)
γ′

− x3
[

ϕ,3 ϕ,1

(
κ2(8ξ ′′ + ω

)
− 24γ′′

)
+ 8κ2 ϕ,13ξ ′

]
= 0, (30)
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E22 = x3
{

x3
[ (

x02 − α2
)
(α + x0)β ϕ,3

2
(
κ2(16ξ ′′ + ω

)
− 48γ′′

)
+ 2

(
x02 − α2

)
(α + x0)β ϕ,1 ϕ,0

(
κ2(16ξ ′′ + ω

)
− 48γ′′

)
− ωκ2(x0 − α)β ϕ,2

2
]

− 48
(

α2 − x02
)
(α + x0)β

(
ϕ,3 − x3(ϕ,33 + 2ϕ,01)

)
γ′

+ 16κ2(α + x0)β
[

x3
((

x02 − α2
)

ϕ,33 + 2
(

x02 − α2
)

ϕ,01

+ (αβ− x0)ϕ,1

)
+2
(

α2 − x02
)

ϕ,3

]
ξ ′
}

− 2κ2
(

α2 − x02
)
(α + x0)β(υ + 60ξ) = 0, (31)

E23 = x3 ϕ,3 ϕ,2

[
24γ′′ −κ2(8ξ ′′ + ω

)]
+ 24

(
ϕ,2 + x3 ϕ,23

)
γ′ + 8κ2

(
ϕ,2 − x3 ϕ,23

)
ξ ′ = 0, (32)

E33 = 2κ2(α + x0)β
(

x02 − α2
)2

(υ + 60ξ)

+ x3
{

x3

(
−2
(

8κ2
(
(x0 − α)β

(
α2 − x02

)
ϕ,22

+ (α + x0)β
[
α2
(

β2 − 1
)

x32
ϕ,11 −

(
α2 − x02

)
(αβ− x0)ϕ,1

− 2
(

x02 − α2
)2

ϕ,01

] )
ξ ′

− (α + x0)β ϕ,1

(
8κ2

[
2
(

x02 − α2
)2

ϕ,0 − α2
(

β2 − 1
)

x32
ϕ,1

]
ξ ′′

+
(

x02 − α2
)2

ϕ,0

(
ωκ2 − 48γ′′

)))
−

(
α2 − x02

)
(x0 − α)β ϕ,2

2
(
κ2(16ξ ′′ + ω

)
− 48γ′′

)
− ωκ2

(
x02 − α2

)2
(α + x0)β ϕ,3

2
)

+ 48
(

α2 − x02
)[

3
(

α2 − x02
)
(α + x0)β ϕ,3

+ x3
(
(α + x0)β

(
2
(

x02 − α2
)

ϕ,01 + (x0 − αβ)ϕ,1

)
+ (x0 − α)β ϕ,22

) ]
γ′
}

= 0. (33)

The Equation (3) for the scalar field takes the form

ω

α2 − x02

{
x3(α + x0)−β

(
x3
[(

α2 − x02
)
(α + x0)β ϕ,33

+ (α + x0)β
(

2
(

α2 − x02
)

ϕ,01 + (αβ− x0)ϕ,1

)
− (x0 − α)β ϕ,22

]
− 2
(

α2 − x02
)
(α + x0)β ϕ,3

)}
= υ′ + 84ξ ′ − 72γ′

κ2 . (34)
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The “privileged” coordinate system used allows for the complete separation of vari-
ables in the Hamilton–Jacobi equation for test particles. We will seek the solution of the
field equations in the class of scalar fields having the “split” form

ϕ(x0, x1, x2, x3) = ϕ0(x0)ϕ1(x1)ϕ2(x2)ϕ3(x3). (35)

Accordingly, there are cases when the scalar field in the used ”privileged” coordinate
system depends on the ignored variables x1 and x2 (on which the metric does not depend)
and the case when the scalar field depends only on the non-ignored variables x0 and x3.
Moreover, the coordinates x0 and x1 are isotropic (along them the space–time interval is
equal to zero).

5.1. Spacetimes II-B1 Type. Scalar Field Depends on Ignored Variables

The structure of the field equations of the quadratic theory of gravity makes it possible
to isolate the dependence of the scalar field ϕ on the ignored variables x1 and x2. The
variable x1, which is isotropic, is isolated, and it is convenient to start the search for
solutions by studying this case, when the scalar field depends on the variable x1. We will
show below that this case does not admit solutions, that is, the scalar field can only depend
on the non-ignored wave variable x0. The case when the scalar field depends on the second,
ignored, but non-isotropic variable x2 is also considered below and it leads to an exact
solution for the considered model.

5.1.1. Spacetimes II-B1 Type, Case ϕ1
′ 6= 0

The space–time metric for spatially homogeneous Shapovalov wave models of type
II-B1 has the form (5):

ds2 =
1

x32

(
2 dx0dx1 + (x0 − α)1−β(x0 + α)1+β dx22

+ dx32
)

,

where x0 is an isotropic (wave) variable, and α and β are constants (α 6= 0, β 6= ±1).
Consider first the case where ϕ depends on an ignored isotropic variable x1, that is,

ϕ1
′ 6= 0. Then from the Equation (28), we get two consequences:

ϕ1
′ = ρ ϕ1

σ, ρ, σ− const.

γ′′ =
ωκ2 ϕ− 24σγ′(ϕ) + 8σκ2ξ ′(ϕ) + 8κ2 ϕξ ′′(ϕ)

24ϕ
, (36)

Then, in the considered case (ϕ1
′ 6= 0), the Equation (29) implies

(σ− 1) ϕ2
′ = 0; (37)

moreover, for σ = 1, also from Equation (27), it follows that ϕ2
′ = 0, and from Equation (30)

we have γ = const . Thus, for ϕ1
′ 6= 0, it always follows from the field equations:

ϕ2
′ = 0. (38)

Then from Equation (30) we get:

γ′

γ′ −κ2ξ ′/3
= const = τ, (σ− 1)x3 ϕ3

′ = τϕ3. (39)

Consider the case σ = 1, then τ = 0 and γ′ = 0, and Equation (36) implies

ωϕ/8 + ξ ′(ϕ) + ϕ ξ ′′(ϕ) = 0 → ξ(ϕ) = c1 ln(ϕ)− ω

32
ϕ2 + c2. (40)
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Then Equation (28) implies α(1− β2) = ϕ0
′ = 0, that is, this is the degenerate case of

a conformally flat space.
We will now assume that σ 6= 1. Then, from (39) for σ 6= 1, we obtain the follow-

ing corollaries:

ϕ3
′ =

τϕ3

(σ− 1)x3 , ϕ3(x3) = c3x3τ/(σ−1)
, ξ ′ =

3(τ − 1)
κ2τ

γ′. (41)

Substitution of these conditions into the remaining equations leads to their inconsis-
tency and the absence of solutions. Thus, we have shown that a scalar field cannot depend
on an ignored isotropic variable x1.

5.1.2. Solution for Spacetimes II-B1 Type for ϕ1
′ = 0, ϕ2

′ 6= 0

Let us now consider the case when the scalar field does not depend on the ignored
isotropic variable x1 but depends on the second ignored (non-isotropic) variable x2:

ϕ = ϕ(x0, x2, x3) = ϕ0(x0)ϕ2(x2)ϕ3(x3), ϕ′2 6= 0. (42)

Then the compatibility condition for Equations (28) and (32) leads to the requirement
ξ = const and additionally

ϕ3(x3) = c1 x3σ
, c1, σ− const. (43)

For the function γ(ϕ) we obtain from (28) and (32) the differential equation

γ′′(ϕ) =
κ2ω

24
− 1 + 1/σ

ϕ
γ′(ϕ). (44)

Equation (44) has two types of solutions depending on the value of the constant σ:

σ 6= 0,−1/2 → γ(ϕ) =
ωσκ2

48(2σ + 1)
ϕ2 + c2 ϕ−1/σ + c3. (45)

σ = −1/2 → γ(ϕ) =
κ2ω

48
ϕ2 ln(ϕ) + c4 ϕ2 + c5. (46)

Let us first consider the second type of solutions—the case (46), when σ = −1/2. Then
from Equation (27), we obtain

ϕ0(x0) = (x0 − α)
1−β

4 (x0 + α)
1+β

4 . (47)

Substituting the function ϕ0(x0) from (47) into the rest of the equations, we obtain
from (25) the condition

α(β2 − 1) = 0; (48)

this option leads to degeneration (the space becomes conformally flat) and the absence of
solutions.

Consider now the case (45), when σ 6= 0,−1/2. Then, integrating Equation (27), we
obtain

ϕ0(x0) = c4

[
(x0 − α)β−1

(x0 + α)β+1

]σ/2

. (49)

Equation (25) with σ 6= −1/2 becomes an identity only if

c2 = 0, c3 = (1 + 8κ2ξ)/24, σ = 1/2. (50)

The field Equations (26), (31) and (33) define ϕ2(x2) and the form of the scalar potential
V(ϕ), thereby giving a complete solution for the problem under consideration.
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Thus, we obtain an exact solution of the field equations of the quadratic theory of
gravity with a scalar field for a spatially homogeneous wave-like model of Shapovalov
space of type II-B1:

ds2 =
1

x32

(
2 dx0dx1 + (x0 − α)1−β(x0 + α)1+β dx22

+ dx32
)

,

ξ(ϕ) = ξ = const, γ(ϕ) =
ωκ2

192
ϕ2 +

1
24

(
1 + 8ξκ2

)
, (51)

V(ϕ) =
ωρ2

8k4 ϕ6 − ω

4
ϕ2 − 60ξ − 3

κ2 , (52)

ϕ = ϕ(x0, x2, x3) = k
(x0 − α)(β−1)/4

(x0 + α)(β+1)/4

√
x3

ρx2 + δ
, (53)

where x0 is an isotropic wave variable, α and β are constant parameters of the space–time
model, and k, ρ, δ are constants of integration.

Note that in the obtained solution, the term in the Lagrangian associated with the
Gauss–Bonnet invariant does not affect the dynamics of the model—it contributes only
to the cosmological constant. The presence of a dependence of the scalar field on the
ignored variable x2 leads to the appearance in the scalar potential V(ϕ) of terms including
the ϕ6. The constant Λ = 60ξ + 3/κ2 plays the role of the cosmological constant in the
obtained solution. The solution can describe the primary gravitational-wave disturbances
in a spatially homogeneous non-isotropic Universe at the early stages of its development
up to the stage of “isotropization”.

5.2. Spacetimes II-B1 Type. Scalar Field Depends on Non-Ignored Variables Only

In this subsection, we will consider the case when the scalar field ϕ, in the “privileged”
coordinate system we use, depends only on the non-ignored variables x0 and x3 (on which
the space–time metric depends).

φ = φ(x0, x3) = φ0(x0) φ3(x3). (54)

Moreover, the variable x0 is a wave isotropic variable (along it the space–time interval
is equal to zero). The obtained solutions in the framework of the quadratic theory of gravity,
taking into account the fact that the considered model is spatially homogeneous, give us
models of wave gravitational perturbations at the early stages of the development of the
Universe—these are examples of exact solutions for primary gravitational waves.

From the field Equation (33) it follows that

φ3(x3) = x3σ
, σ− const, (55)

72σ

κ2 φγ′(φ) =
ωσ2

2
φ2 − υ(φ)− 60ξ(φ). (56)

Substituting the form of the derivative γ′(φ) from (56) into the field equations, we
obtain from the compatibility conditions for Equations (26), (28) and (31),

ξ(φ) = ξ = const. (57)

Then from Equations (26), (28), (31) there follow two solutions depending on the value
of the constant σ. For σ = −1/2, one solution, for σ 6= −1/2, another solution.

Consider first the special case φ = φ(x0, x3) for σ = −1/2. Then from Equation (33) we
obtain for the scalar field the following form

φ(x0, x3) =
φ0(x0)√

x3
. (58)
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The compatibility conditions for Equations (26), (28), (31) and the integration of these
equations yield

γ(φ) =
1
72

c1κ2φ2 +
κ2

576

[
12ωφ2 ln(φ)− 7ωφ2 − 480ξ

]
+ c2, (59)

V(φ) = c1φ2 +
3
2

ωφ2 ln(φ)− 60ξ − 3
κ2 . (60)

Substituting this kind of scalar field function into the remaining Equation (31), we
obtain as a consequence α(1− β2) = 0. Thus, in the considered variant of solving the
problem for σ = −1/2, the space–time becomes “degenerate”—conformally flat.

For completeness, we present the resulting conformally flat solution of the
field equations:

ds2 =
1

x32

(
2 dx0dx1 + (x0 − α)1−β(x0 + α)1+β dx22

+ dx32
)

, α(1− β2) = 0,

φ(x0, x3) = c1

√
c2x0 − c3

x3 , c1, c2, c3, c4 − const,

ξ(φ) = ξ = const,

γ(φ) =
1

576

[
κ2φ2(12ω ln(φ) + 8c4 − 7ω) + 24

(
8ξκ2 + 1

)]
,

V(φ) = φ2
(

3
2

ω ln(φ) + c4

)
− 60ξ − 3

κ2 .

Let us now consider the main solution for σ 6= −1/2. Then, Equations (26), (28) and (31)
give

υ′(φ) =
[
−120ξ + ωσ2(2σ− 5)φ2 − 2υ(φ)

]
/(2σφ). (61)

Integrating Equations (56) and (61) we get

γ(φ) =
c1κ2

72
φ−1/σ +

κ2(ωσφ2 − 40(2σ + 1) ξ
)

48(2σ + 1)
+ c2, σ 6= −1/2, (62)

V(φ) = c1φ−1/σ +
ωσ2(2σ− 5)φ2

4σ + 2
− 60ξ − 3

κ2 , c1, c2 − const. (63)

The remaining Equation (25), expanded in powers of φ, gives the following conditions:

α2(β2 − 1
)(

24c2 − 28ξκ2 − 1
)

κ2
(

x02 − α2
)2 = 0, (64)

c1φ−1/σ
α2(β2 − 1

)
σ2φ0

2 +
(
(σ + 1)φ0

′2 − σφ0φ0
′′)(x02 − α2

)2

3σ2
(

x02 − α2
)2

φ02
= 0, (65)

ωφ2
α2(β2 − 1

)
σφ0

2/2 +
(
σφ0φ0

′′ − (σ + 1)φ0
′2)(x02 − α2

)2

2(2σ + 1)
(

x02 − α2
)2

φ02
= 0. (66)

From Equations (64)–(66), we obtain the following consequences:

c1 = 0, c2 = (1 + 28ξκ2)/24, (67)
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φ0φ0
′′ − (σ + 1)

σ
φ0
′2 +

α2(β2 − 1
)

2
(

x02 − α2
)2 φ0

2 = 0. (68)

Equation (68) reduces to the Riccati equation:

Z′(x0)− 1
σ

Z2(x0) =
α2(1− β2)

2
(

x02 − α2
)2 , Z(x0) =

d ln φ0

dx0 . (69)

Thus, we obtain an exact solution of the field equations of the quadratic theory of
gravity with a scalar field for a spatially homogeneous wave-like Shapovalov spacetime of
type II-B1, of the form:

ds2 =
1

x32

(
2 dx0dx1 + (x0 − α)1−β(x0 + α)1+β dx22

+ dx32
)

,

φ = φ(x0, x3) = x3σ
exp

∫
Z(x0) dx0, σ 6= −1/2, (70)

where the function Z(x0) is defined by the Riccati Equation (69), and scalar field functions
from the Lagrangian (1) take the form:

ξ(φ) = ξ = const, (71)

γ(φ) =
κ2ωσ

48(2σ + 1)
φ(x0, x3)

2
+ (1 + 8κ2ξ)/24, (72)

V(φ) =
ωσ2(2σ− 5)

2(2σ + 1)
φ(x0, x3)

2 − 60ξ − 3/κ2. (73)

The constant Λ = 3(20ξ + 1/κ2) plays the role of the cosmological constant. The term
associated with the Gauss–Bonnet invariant contributes only to the cosmological constant.

6. Shapovalov Spacetimes II-B2 Type

Let us now consider the subtype II-B2 of spatially homogeneous Shapovalov models.
Let us write down the explicit form of the field equations for the type II-B2 metric:

ds2 =
1

x32

(
2 dx0dx2 + x0−α

dx22
+ dx32

)
. (74)

For the metric (74), the field Equation (2) take the form (Tαβ = 0):

E00 =
x03

4κ2

(
α(α + 2)(1− 24γ)

x02 − 6
(

ϕ,0
2γ′′ + ϕ,00γ′

))
+ 2α(α + 2)x0 ξ

+ ξ ′
[
4αx02

(
2x0 ϕ,00 + ϕ,0

)
+ α2x32

(α + 2)ϕ,1 + 2αx0x3(α + 2)
(

x3 ϕ,33 + ϕ,3

)]
+ x0

[
2
(

α(α + 2)x32
ϕ,3

2 + 4x02
ϕ,0

2
)

ξ ′′ + ωx02
ϕ,0

2
]
= 0, (75)

E01 = x0x3
[

x0α
ϕ,2

2
(
κ2(16ξ ′′ + ω

)
− 48γ′′

)
+ ϕ,3

2
(
κ2(16ξ ′′ + ω

)
− 48γ′′

)
+ 16ϕ,1 ϕ,0

(
κ2ξ ′′ − 3γ′′

) ]
+

2κ2x0

x3 (υ + 60ξ)

+ 24γ′
[

2x0 ϕ,3 − x3
(

2x0α+1
ϕ,22 − αϕ,1 + 2x0 ϕ,33 + 2x0 ϕ,01

) ]
− 16κ2ξ ′

[
2x0 ϕ,3 − x3

(
x0α+1

ϕ,22 − αϕ,1 + x0 ϕ,33 + x0 ϕ,01

)]
= 0, (76)
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E02 = 12
(

αϕ,2 + 2x0 ϕ,02

)
γ′ − 4κ2

(
αϕ,2 + 2x0 ϕ,02

)
ξ ′

− x0 ϕ,2 ϕ,0

(
κ2(8ξ ′′ + ω

)
− 24γ′′

)
= 0, (77)

E03 = 2κ2x3 ϕ,3

(
α(α + 2)x32

ϕ,1 − 4x02
ϕ,0

)
ξ ′′

+ 2κ2
(

α(α + 2)x33
ϕ,13 + α(α + 2)x32

ϕ,1 − 4x02
(

ϕ,0 + x3 ϕ,03

))
ξ ′

+ x02
(

x3 ϕ,3 ϕ,0

(
24γ′′ −ωκ2

)
+ 24

(
ϕ,0 + x3 ϕ,03

)
γ′
)
= 0, (78)

E11 = 8ϕ,11

(
3γ′ −κ2ξ ′

)
− ϕ,1

2
(
κ2(8ξ ′′ + ω

)
− 24γ′′

)
= 0, (79)

E12 = 8ϕ,12

(
3γ′ −κ2ξ ′

)
− ϕ,1 ϕ,2

(
κ2(8ξ ′′ + ω

)
− 24γ′′

)
= 0, (80)

E13 = 24
(

ϕ,1 + x3 ϕ,13

)
γ′ − x3

[
ϕ,1 ϕ,3

(
κ2(8ξ ′′ + ω

)
− 24γ′′

)
+ 8κ2 ϕ,13ξ ′

]
= 0, (81)

E22 = − x3
[
−x0x3

(
−ωκ2x0α

ϕ,2
2 + ϕ,3

2
(
κ2(16ξ ′′ + ω

)
− 48γ′′

)
+ 2ϕ,0 ϕ,1

(
κ2(16ξ ′′ + ω

)
− 48γ′′

))
+ 8κ2

(
4x0 ϕ,3 − x3

(
αϕ,1 + 2x0 ϕ,33 + 4x0 ϕ,01

))
ξ ′

− 48x0
(

ϕ,3 − x3(ϕ,33 + 2ϕ,01)
)

γ′
]

+ 2κ2x0υ + 120κ2x0ξ = 0, (82)

E23 = − x3 ϕ,2 ϕ,3

(
κ2(8ξ ′′ + ω

)
− 24γ′′

)
+ 24

(
ϕ,2 + x3 ϕ,23

)
γ′

+ 8κ2
(

ϕ,2 − x3 ϕ,23

)
ξ ′ = 0, (83)

E33 = − 2α2x32
ϕ,1

2ξ ′′

x02 − 2α2x32
ϕ,11ξ ′

x02 +
1
2

ωx0α
ϕ,2

2

− 3

κ2x0x32

[
8x0x32

(
x0α

ϕ,2
2 + 2ϕ,1 ϕ,0

)
γ′′

+ 4x3
(

x3
(

2x0α+1
ϕ,22 − αϕ,1 + 4x0 ϕ,01

)
− 6x0 ϕ,3

)
γ′
]

+ 8x0α
ϕ,22ξ ′ + 8x0α

ϕ,2
2ξ ′′ − 4αx32

ϕ,1
2ξ ′′

x02 − 4αx32
ϕ,11ξ ′

x02 − 4αϕ,1ξ ′

x0

− 1
2

ωϕ,3
2 + ωϕ,0 ϕ,1 + 16ϕ,0 ϕ,1ξ ′′ + 16ϕ,01ξ ′ +

υ

x32 +
60ξ

x32 = 0, (84)

where we used the replacement V = υ(ϕ)− 3/κ2.
The scalar field Equation (3) for the metric (74) becomes:

x3

2x0

[
x3
(

2x0α+1
ϕ,22 − αϕ,1 + 2x0 ϕ,33 + 4x0 ϕ,01

)
− 4x0 ϕ,3

]
+

1
ω

(
72γ′

κ2 −V′ − 84ξ ′
)
= 0, (85)
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We will look for a solution to the field equations in the class of scalar fields that have a
“split” form:

ϕ(x0, x1, x2, x3) = ϕ0(x0) ϕ1(x1) ϕ2(x2) ϕ3(x3). (86)

The compatibility of the field equations leads to the condition:

ϕ,1 = 0 → ϕ = ϕ(x0, x2, x3). (87)

The variable x1 is an ignored isotropic variable that the metric does not depend on.
Thus, the scalar field ϕ does not depend on the ignored isotropic variable x1.

6.1. Exact Solution for Model II-B2 in Case ϕ,2 6= 0

Consider the case where the scalar field depends on the ignored variable x2. Then, the
compatibility conditions for Equations (77), (78) and (83) lead to the ratios:

0 = ακ2 ϕ0 ϕ3 ϕ2
′ϕξ ′

(
3γ′ −κ2ξ ′

)
, (88)

0 = κ2 ϕ3 ϕ0
′ϕ2
′ϕξ ′, (89)

0 = ϕ2
′ϕ
(

αx3 ϕ0 ϕ3
′
(

3γ′ −κ2ξ ′
)
− 6x0 ϕ3 ϕ0

′γ′
)

. (90)

Hence follows the condition:

ξ(ϕ) = const. (91)

Thus, the considered spatially homogeneous wave-like model of space–time does not
admit the presence of a dynamic term associated with the Gauss–Bonnet invariant.

In addition, the compatibility conditions lead to the equations:

αx3 ϕ3
′/ϕ3 = σ, 2x0 ϕ0

′/ϕ0 = σ, σ− const. (92)

Thus, the scalar field takes the form

ϕ(x0, x2, x3) = x0σ/2
x3σ/α

ϕ2(x2). (93)

Then, Equation (83) gives a second order differential equation on γ(ϕ), the solution of
which has the form

γ(ϕ) = c1 ϕ−α/σ + c2 +
ωσκ2

48(α + 2σ)
ϕ2, c1, c2 − const. (94)

In this case, the scalar Equation (85) takes the following form:

ϕ

[
ϕ2α/σ ϕ2

−1−2α/σ ϕ2
′′ +

σ(σ− 3α)

α2

]
=

υ′(ϕ)

ω
− 72c1 ϕ−

α+σ
σ

ωκ2 − 3σϕ

α + 2σ
; (95)

this implies

ϕ2
−1−2α/σ ϕ2

′′ = const → ϕ2
′ = ρ ϕ2

1+α/σ, ρ− const. (96)

Then, the scalar Equation (85) takes the following form:

α2ρ2(α + σ)ϕ2α/σ + σ2(σ− 3α)

α2σ
ϕ =

υ′(ϕ)

ω
− 72c1 ϕ−

α+σ
σ

ωκ2 − 3σϕ

α + 2σ
. (97)
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From here we can find the potential of the scalar field,

V(ϕ) =
ωρ2

2
ϕ

2(α+σ)
σ − 72c1σϕ−

α
σ

ακ2 − ωσ2(5α− 2σ)ϕ2

2α2(α + 2σ)
+ c3. (98)

Compatibility conditions for field Equations (76), (82) and (84) lead to the following
form of integration constants:

c1 = 0, c2 = (1 + 8κ2ξ)/24, c3 = −60ξ. (99)

Then from Equation (75), we obtain the value of the constant σ:

σ = α/2. (100)

Finally, for the case ϕ,2 6= 0, we obtain the following exact solution of the field
Equations (2) and (3) in vacuum for the metric (74):

ds2 =
1

x32

(
2 dx0dx2 + x0−α

dx22
+ dx32

)
,

ξ(ϕ) = ξ = const, γ(ϕ) =
ωκ2

192
ϕ2 +

1
24

(
8ξκ2 + 1

)
, (101)

V(ϕ) =
ω

8 a4 ϕ6 − ω

4
ϕ2 − 60ξ − 3

κ2 , (102)

ϕ(x0, x2, x3) = a
(

x0
)α/4

√
x3

x2 − b
, a, b− const. (103)

Here, α is a constant parameter of the model, the constant Λ = −3 (20 ξ + 1/κ2)
plays the role of a cosmological constant. The model becomes conformally flat (but not
flat) when α(α + 2) = 0. The variable x0 has a wave character (along x0, the space–time
interval vanishes).

Thus, in a spatially homogeneous wave-like model of Shapovalov’s space–time of
type II-B2, when the scalar field depends on the “ignored” variable x2, the scalar potential
V(ϕ) and the function γ(ϕ) in the Lagrangian depend on the scalar field polynomially
with even degrees. The term associated with the Gauss–Bonnet invariant contributes only
to the cosmological constant.

6.2. Exact Solution for the Model Subtype II-B2 in the Case When the Scalar Field Depends Only
on Non-Ignored Variables (ϕ,1 = ϕ,2 = 0)

Consider the solution of the field Equations (2), (3) for the metric (74) in the case when
the scalar field depends only on non-ignored variables (on which the metric depends):

ϕ = ϕ(x0, x3). (104)

Equation (84) implies that
ϕ,3 = F(ϕ)/x3, (105)

γ′(ϕ) = κ2 ωF(ϕ)2 − 2[υ(ϕ) + 60ξ(ϕ)]

144F(ϕ)
, (106)

where F(ϕ) is an auxiliary function of a scalar field.
Then the equation for the scalar field (3) takes the form:

ωF
(

F′ − 3
)
=
−ωF2 + 2F(υ′ + 84ξ ′) + 2(υ + 60ξ)

2F
. (107)
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From the scalar equation we obtain

F′(ϕ) =
5ωF2 + 2F(υ′ + 84ξ ′) + 2(υ + 60ξ)

2ωF2 . (108)

Then, the compatibility conditions for Equations (77), (78) and (83) lead to the require-
ment:

ξ = const. (109)

Thus, the considered spatially homogeneous wave-like model of space–time does not
allow for the presence of a “dynamic” term associated with the Gauss–Bonnet invariant,
which contributes only to the cosmological constant.

From the system of field equations, only Equation (75) remains, which takes the form

0 = ωα(α + 2)
(

72γ− 3
(

8ξκ2 + 1
) )

F4

+ x02
[

ϕ,00

(
2ω2κ2F5 − 4ωκ2F3(υ + 60ξ)

)
+ ϕ,0

2
(

4κ2(υ + 60ξ)
(

3ωF2 + Fυ′ + υ + 60ξ
)
− 7ω2κ2F4 − 2ωκ2F3υ′

) ]
. (110)

We will look for a solution for a scalar field in a ”split” form:

ϕ(x0, x3) = ϕ0(x0)ϕ3(x3), (111)

then, from the relation (105), we obtain

x3 ϕ3
′/ϕ3 = const = σ → ϕ3 = x3σ

, F(ϕ) = σϕ. (112)

Integrating Equation (108), we get

V(ϕ) = c1 ϕ−1/σ +
ωσ2(2σ− 5)

4σ + 2
ϕ2 − 60ξ − 3

κ2 , σ 6= −1/2. (113)

Then from Equation (106) we have

γ(ϕ) = c2 +
κ2 ϕ−1/σ

[
c1(4σ + 2) + 3ωσϕ2+1/σ

]
144(2σ + 1)

. (114)

Equation (75) becomes (σ 6= −1/2):

0 =
c1 ϕ−1/σ

(
α(α + 2)σ2 ϕ0

2x0−2 − 4σϕ0 ϕ0
′′ + 4(σ + 1)ϕ0

′2
)

12σ2 ϕ02

+
ωϕ2

(
α(α + 2)σϕ0

2x0−2
+ 8σϕ0 ϕ0

′′ − 8(σ + 1)ϕ0
′2
)

8(2σ + 1)ϕ02

−
α(α + 2)

(
−24c2 + 8ξκ2 + 1

)
4κ2x02 . (115)

From Equation (115) we obtain the following consequences:

α(α + 2)
(

c2 − (1 + 8ξκ2)/24
)
= 0, (116)

α(α + 2)c1 = 0, (117)

α(α + 2)σϕ0
2x0−2

+ 8σϕ0 ϕ0
′′ − 8(σ + 1)ϕ0

′2 = 0. (118)
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If α(α + 2) = 0, then the space–time degenerates—becomes conformally flat.
For completeness, we present the exact solution of the field equations for this “degen-

erate” case of conformally flat spacetime:

ds2 =
1

x32

(
2 dx0dx2 + x0−α

dx22
+ dx32

)
, α(α + 2) = 0,

ϕ = ϕ(x0, x3) = c1

(
x3

c2x0 + c3

)σ

, (119)

γ(ϕ) =
κ2
(

3ωσϕ2 + 2c4(2σ + 1)ϕ−1/σ
)

144(2σ + 1)
+ c5, (120)

V(ϕ) = c4 ϕ−1/σ +
ωσ2(2σ− 5)

2(2σ + 1)
ϕ2 − 60ξ − 3

κ2 . (121)

ξ(ϕ) = ξ − const, σ, c1, c2, c3, c4, c5 − const, σ 6= 0,−1/2.

Let us now consider the main case when the space–time is not conformally flat, that is,
α(α + 2) 6= 0.

Thus, the final solution of the field equations for the spatially homogeneous wave-like
Shapovalov model of type II-B2 is:

ds2 =
1

x32

(
2 dx0dx2 + x0−α

dx22
+ dx32

)
, α 6= 0,−2;

the quadratic theory of gravity with a scalar field takes the form:

ϕ(x0, x3) = c1

x3 x0−1/2+
√

2+α(α+2)/σ

c2 + x0
√

1+α(α+2)/(2σ)

σ

, α, σ, c1, c2 − const, (122)

σ 6= 0,−1/2; ξ(ϕ) = ξ − const,

γ(ϕ) =
κ2ωσ

48(2σ + 1)
ϕ2 + (1 + 8ξκ2)/24,

V(ϕ) =
ωσ2(2σ− 5)

2(2σ + 1)
ϕ2 − 60ξ − 3

κ2 .

The constant Λ = 3(20ξ + 1/κ2) plays the role of the cosmological constant.
Thus, in a spatially homogeneous wave-like model of Shapovalov’s space–time of type

II-B2, when the scalar field depends only on non-ignored variables, the scalar potential V(ϕ)
and the coefficient γ(ϕ) at R2 in the Lagrangian depend on the scalar field quadratically.
The term associated with the Gauss–Bonnet invariant contributes to the cosmological
constant, while it does not contribute to the ”scalar” dynamics of the model.

7. Conclusions

In this work, a number of exact solutions are obtained for spatially homogeneous
wave-like models of Shapovalov space–time of type II in the theory of gravity quadratic
in curvature with a scalar field. Shapovalov’s models [22] are well suited for studying
gravitational waves, since they admit a privileged coordinate system in which the wave
variable is separated in the eikonal equation for radiation, which allows one to obtain exact
wave solutions.

The form of the scalar field, scalar potential and scalar field dependent functions
included in the Lagrangian of the theory is found. In the considered models, the term
in the Lagrangian associated with the Gauss–Bonnet invariant does not contribute to the
”scalar” dynamics, but only contributes to the cosmological constant.
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The obtained exact models can be interpreted as models of gravitational wave dis-
turbances at the early stages of the development of the Universe. The considered models
make it possible to integrate in quadratures the equations of motion of test particles in
the Hamilton–Jacobi formalism. The solutions obtained provide, among other things,
precisely integrable models for debugging numerical methods of analysis in modified
F(R, G)—theories of gravity.

Note that the use of the approach proposed in this work makes it possible to obtain
exactly integrable models, not only for a vacuum, but also when using the tensor of both
pure radiation [27] and dust [26] as the energy-momentum tensor.
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