Construction of Higher-Order Metric Fluctuation Terms in Spacetime Symmetry-Breaking Effective Field Theory
Abstract
:1. Introduction
2. Background on the Action
3. General Construction of Lagrange Density
4. Covariant Construction of Lagrange Density
5. Field Equations
6. Summary and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Hehl, F.W.; Von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torsion: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hees, A.; Bailey, Q.G.; Bourgoin, A.; Bars, P.L.; Guerlin, C.; Poncin-Lafitte, L. Tests of Lorentz symmetry in the gravitational sector. Universe 2016, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.; Russell, N. Data Tables for Lorentz and CPT Violation. Rev. Mod. Phys. 2011, 83, 11. [Google Scholar] [CrossRef] [Green Version]
- Tasson, J. The Standard-Model Extension and Gravitational Tests. Symmetry 2016, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Yunes, N.; Yagi, K.; Pretorius, F. Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226. Phys. Rev. D 2016, 94, 084002. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Potting, R. CPT, strings, and meson factories. Phys. Rev. D 1995, 51, 3923. [Google Scholar] [CrossRef] [Green Version]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760. [Google Scholar] [CrossRef] [Green Version]
- Colladay, D.; Kostelecký, V.A. Lorentz violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef] [Green Version]
- Poncin-Lafitte, C.L.; Hees, A.; Lambert, S. Lorentz symmetry and very long baseline interferometry. Phys. Rev. D 2016, 94, 125030. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. 2017, 848, L13. [Google Scholar] [CrossRef]
- Bailey, Q.G. Time-delay and doppler tests of the Lorentz symmetry of gravity. Phys. Rev. D 2009, 80, 044004. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G.; Kostelecký, V.A. Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D 2006, 74, 045001. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Tasson, J. Constraints on Lorentz violation from gravitational Cherenkov radiation. Phys. Lett. B 2015, 749, 551. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Testing local Lorentz invariance with gravitational waves. Phys. Lett. B 2016, 757, 510. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Tasson, J. Prospects for Large Relativity Violations in Matter-Gravity Couplings. Phys. Rev. Lett. 2009, 102, 010402. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Tasson, J. Matter-gravity couplings and Lorentz violation. Phys. Rev. D 2011, 83, 016013. [Google Scholar] [CrossRef] [Green Version]
- Bourgoin, A.; Hees, A.; Bouquillon, S.; Le Poncin-Lafitte, C.; Francou, G.; Angonin, M.C. Testing Lorentz symmetry with Lunar Laser Ranging. Phys. Rev. Lett. 2016, 117, 241301. [Google Scholar] [CrossRef] [Green Version]
- Mueller, H. Atom interferometry tests of the isotropy of post-Newtonian gravity. Phys. Rev. Lett. 2008, 100, 031101. [Google Scholar] [CrossRef] [Green Version]
- Flowers, N.A.; Goodge, C.; Tasson, J.D. Superconducting-Gravimeter Tests of Local Lorentz Invariance. Phys. Rev. Lett. 2017, 119, 201101. [Google Scholar] [CrossRef] [Green Version]
- Shao, C.G.; Chen, Y.F.; Sun, R.; Cao, L.S.; Zhou, M.K.; Hu, Z.K.; Yu, C.; Müller, H. Limits on Lorentz violation in gravity from worldwide superconducting gravimeters. Phys. Rev. D 2018, 97, 024019. [Google Scholar] [CrossRef] [Green Version]
- Hees, A.; Bailey, Q.G.; Le Poncin-Lafitte, C.; Bourgoin, A.; Rivoldini, A.; Lamine, B.; Meynadier, F.; Guerlin, C.; Wolf, P. Testing Lorentz symmetry with planetary orbital dynamics. Phys. Rev. D 2015, 92, 064049. [Google Scholar] [CrossRef] [Green Version]
- Shao, L. Tests of Local Lorentz Invariance Violation of Gravity in the Standard Model Extension with Pulsars. Phys. Rev. Lett. 2014, 112, 111103. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G. Anisotropic cubic curvature couplings. Phys. Rev. D 2016, 94, 065029. [Google Scholar] [CrossRef] [Green Version]
- Bonder, Y. Lorentz violation in the gravity sector: The t puzzle. Phys. Rev. D 2015, 91, 125002. [Google Scholar] [CrossRef] [Green Version]
- Bonder, Y.; Leon, G. Inflation as an amplifier. Phys. Rev. D 2017, 96, 044036. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G. Recent Developments in Spacetime-Symmetry tests in Gravity. In CPT and Lorentz Symmetry VIII; Lehnert, R., Ed.; World Scientific: Singapore, 2020. [Google Scholar]
- Bonder, Y.; Peterson, C. Explicit Lorentz violation in a static and spherically-symmetric spacetime. Phys. Rev. D 2020, 101, 064056. [Google Scholar] [CrossRef] [Green Version]
- O’Neal-Ault, K.; Bailey, Q.G.; Nilsson, N.A. 3+1 formulation of the standard-model extension. Phys. Rev. D 2021, 103, 044010. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, J.; Shao, L. Neutron star structure in the minimal gravitational Standard-Model Exten-sion and the implication to continuous gravitational waves. Phys. Lett. B 2020, 803, 135283. [Google Scholar] [CrossRef]
- Xu, R.; Gao, Y.; Shao, L. Precession of Spheroids under Lorentz violation and Observational Conse-Quences for Neutron Stars. arXiv 2021, arXiv:2012.01320. [Google Scholar]
- Bonder, Y.; Peterson, C. Spontaneous Lorentz violation and Asymptotic Flatness. arXiv 2021, arXiv:2103.07611. [Google Scholar]
- Kostelecký, V.A.; Mewes, M. Lorentz and Diffeomorphism Violations in Linearized Gravity. Phys. Lett. B 2018, 779, 136. [Google Scholar] [CrossRef]
- Seifert, M. Vector models of gravitational Lorentz symmetry breaking. Phys. Rev. D 2009, 79, 124012. [Google Scholar] [CrossRef]
- Altschul, B.; Bailey, Q.G.; Kostelecký, V.A. Lorentz violation with an antisymmetric tensor. Phys. Rev. D 2010, 81, 065028. [Google Scholar] [CrossRef] [Green Version]
- Seifert, M. Lorentz-Violating Gravity Models and the Linearized Limit. Symmetry 2018, 10, 490. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Li, Z. Backgrounds in gravitational effective field theory. Phys. Rev. D 2021, 103, 024059. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Lane, C.D. Relating Noncommutative SO(2,3)* Gravity to the Lorentz-Violating Stand-ard-Model Extension. Symmetry 2018, 10, 480. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G.; Kostelecký, V.A.; Xu, R. Short-range gravity and Lorentz violation. Phys. Rev. D 2015, 91, 022006. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Kostelecký, V.A. Spontaneous Lorentz Violation, Nambu-Goldstone modes, and gravity. Phys. Rev. D 2005, 71, 065008. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Fung, S.H.; Kostelecký, V.A. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity. Phys. Rev. D 2008, 77, 065020. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R. Explicit versus spontaneous diffeomorphism breaking in gravity. Phys. Rev. D 2015, 91, 065034. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Sehic, A. Noether identities in gravity theories with nondynamical backgrounds and explicit spacetime symmetry breaking. Phys. Rev. D 2016, 94, 104034. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Bossi, H.; Wen, Y. Gravity with explicit spacetime symmetry breaking and the standard-model extension. Phys. Rev. D 2019, 100, 084022. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Yang, Y. Gravity with Explicit Diffeomorphism Breaking. Symmetry 2021, 13, 660. [Google Scholar] [CrossRef]
- Nutma, T. xTras: A field-theory inspired xAct package for Mathematica. Comput. Phys. Commun. 2014, 185, 1719. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Potting, R. Gravity from spontaneous Lorentz violation. Phys. Rev. D 2009, 79, 065018. [Google Scholar] [CrossRef] [Green Version]
- Will, C.M. Theoretical Frameworks for Testing Relativistic Gravity. II. Parametrized Post-Newtonian Hydrodynamics, and the Nordtvedt Effect. Astrophys. J. 1971, 163, 611. [Google Scholar] [CrossRef]
- Will, C.M. Relativistic Gravity tn the Solar System. 111. Experimental Disproof of a Class of Linear Theories of Gravitation. Astrophys. J. 1973, 185, 31. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Samuel, S. Gravitational phenomenology in higher-dimensional theories and strings. Phys. Rev. D 1989, 40, 1886. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T.; Mattingly, D. Gravity with a dynamical preferred frame. Phys. Rev. D 2001, 64, 024028. [Google Scholar] [CrossRef] [Green Version]
- Casana, R.; Cavalcante, A.; Poulis, F.P.; Santos, E.B. Exact Schwarzschild-like solution in a bumblebee gravity model. Phys. Rev. D 2018, 97, 104001. [Google Scholar] [CrossRef] [Green Version]
- Maluf, R.V.; Neves, J.C.S. Black holes with a cosmological constant in bumblebee gravity. Phys. Rev. D 2021, 103, 044002. [Google Scholar] [CrossRef]
Term | Expression |
---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailey, Q.G. Construction of Higher-Order Metric Fluctuation Terms in Spacetime Symmetry-Breaking Effective Field Theory. Symmetry 2021, 13, 834. https://doi.org/10.3390/sym13050834
Bailey QG. Construction of Higher-Order Metric Fluctuation Terms in Spacetime Symmetry-Breaking Effective Field Theory. Symmetry. 2021; 13(5):834. https://doi.org/10.3390/sym13050834
Chicago/Turabian StyleBailey, Quentin G. 2021. "Construction of Higher-Order Metric Fluctuation Terms in Spacetime Symmetry-Breaking Effective Field Theory" Symmetry 13, no. 5: 834. https://doi.org/10.3390/sym13050834
APA StyleBailey, Q. G. (2021). Construction of Higher-Order Metric Fluctuation Terms in Spacetime Symmetry-Breaking Effective Field Theory. Symmetry, 13(5), 834. https://doi.org/10.3390/sym13050834