On the Supersymmetry of the Klein–Gordon Oscillator †
Abstract
:1. Introduction
2. Supersymmetry
3. Spectral Properties
4. Green’s Function
5. Summary and Outlook
Funding
Conflicts of Interest
References
- Palmieri, P. A phenomenology of Galileo’s experiments with pendulums. Brit. J. Hist. Sci. 2009, 42, 479–513. [Google Scholar] [CrossRef] [Green Version]
- Hook, R. De Potentia Restitutiva, or of Spring. Explaining the Power of Springing Bodies; The Royal Society: London, UK, 1678. [Google Scholar]
- Planck, M. Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandl. Dtsch. Phys. Ges. 1900, 2, 237–245. [Google Scholar]
- Itô, D.; Mori, K.; Carriere, E. An example of dynamical systems with linear trajectory. Nuovo Cim. A 1967, 51, 1119–1121. [Google Scholar] [CrossRef]
- Swamy, N.V.V.J. Exact Solution of the Dirac Equation with an Equivalent Oscillator Potential. Phys. Rev. 1969, 180, 1225–1226. [Google Scholar] [CrossRef]
- Cook, P.A. Relativistic harmonic oscillators with intrinsic spin structure. Lett. Nuovo Cim. 1971, 1, 419–426. [Google Scholar] [CrossRef]
- Moshinsky, M.; Szczepaniak, A. The Dirac oscillator. J. Phys. A 1989, 22, L817–L819. [Google Scholar] [CrossRef]
- Quesne, C.; Moshinsky, M. Symmetry Lie algebra of the Dirac oscillator. J. Phys. A 1990, 23, 2263–2272. [Google Scholar] [CrossRef]
- Debergh, N.; Ndimubandi, J.; Strivay, D. On relativistic scalar and vector mesons with harmonic oscillatorlike interactions. Z. Phys. C 1992, 56, 421–425. [Google Scholar] [CrossRef]
- Bruce, S.; Minning, P. The Klein–Gordon Oscillator. Nuovo Cim. A 1993, 106, 711–713. [Google Scholar] [CrossRef]
- Dvoeglazov, V.V.; del Sol Mesa, A. Notes on oscillator-like interactions of various spin relativistic particles. NASA Conf. Pub. 1994, 3286, 333–340. [Google Scholar]
- Rao, N.A.; Kagali, B.A. Energy profile of the one-dimensional Klein–Gordon oscillator. Phys. Scr. 2008, 77, 015003. [Google Scholar] [CrossRef]
- Boumali, A.; Hafdallah, A.; Toumi, A. Comment on ’Energy profile of the one-dimensional Klein–Gordon oscillator’. Phys. Scr. 2011, 84, 037001. [Google Scholar] [CrossRef]
- Mirza, B.; Mohadesi, M.; Zare, S. The Klein–Gordon and the Dirac Oscillators in a Noncommutative Space. Commun. Theor. Phys. 2004, 42, 664–668. [Google Scholar] [CrossRef] [Green Version]
- Mirza, B.; Mohadesi, M. Relativistic Oscillators in a Noncommutative Space and in a Magnetic Field. Commun. Theor. Phys. 2011, 55, 405–409. [Google Scholar] [CrossRef]
- Santos, L.C.N.; Mota, C.E.; Barros, C.C., Jr. Klein–Gordon Oscillator in a Topologically Nontrivial Space-Time. Adv. High Energy Phys. 2019, 2019, 2729352. [Google Scholar] [CrossRef]
- Ahmed, F. The generalized Klein–Gordon oscillator in the background of cosmic string space-time with a linear potential in the Kaluza–Klein theory. Eur. Phys. J. C 2020, 80, 211. [Google Scholar] [CrossRef]
- Bragança, E.A.F.; Vitória, R.L.L.; Belich, H.; Bezerra de Mello, E.R. Relativistic quantum oscillators in the global monopole spacetime. Eur. Phys. J. 2020, 80, 206. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Chen, H.; Hassanabadi, H.; Long, Z.-W.; Long, C.-Y. The study of the generalized Klein–Gordon oscillator in the context of the Som-Raychaudhuri space-time. arXiv 2021, arXiv:2101.06356. [Google Scholar]
- Benítez, J.; Martínez y Romero, R.P.; Núñez-Yépez, H.N.; Salas-Brito, A.L. Solution and Hidden Super-symmetry of a Dirac Oscillator. Phys. Rev. Lett. 1990, 64, 1643–1645, ERRATA Phys. Rev. Lett. 1990, 65, 2085. [Google Scholar] [CrossRef]
- Beckers, J.; Debergh, N. Supersymmetry, Foldy-Wouthuysen trausformations, and relativistic oscillators. Phys. Rev. D 1990, 42, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Martínez y Romero, R.P.; Morena, M.; Zentella, A. Supersymmetric properties and stability of the Dirac sea. Phys. Rev. D 1991, 43, 2036–2040. [Google Scholar] [CrossRef]
- Quesne, C. Supersymmetry and the Dirac oscillator. Int. J. Mod. Phys. 1991, 6, 1567–1589. [Google Scholar] [CrossRef]
- Junker, G.; Inomata, A. Path Integral and Spectral Representations for Supersymmetric Dirac-Hamiltonians. J. Math. Phys. 2018, 59, 052301. [Google Scholar] [CrossRef] [Green Version]
- Junker, G. Supersymmetric Methods in Quantum, Statistical and Solid State Physics, Enlarged and revised ed.; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Junker, G. Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin. Symmetry 2021, 12, 1590. [Google Scholar] [CrossRef]
- Feshbach, H.; Villars, F. Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles. Rev. Mod. Phys. 1958, 30, 24–45. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Is Pseudo-Hermitian Quantum Mechanics an Indefinite-Metric Quantum Theory? Czech. J. Phys. 2003, 53, 1079–1084. [Google Scholar] [CrossRef] [Green Version]
- Mostafazadeh, A. A Physical Realization of the Generalized PT-, C-, and CPT-Symmetries and the Position Operator for Klein–Gordon Fields. Int. J. Mod. Phys. A 2006, 53, 2553–2572. [Google Scholar] [CrossRef] [Green Version]
- Galindo, A.; Pascual, P. Quantum Mechanics I; Springer: Berlin, Germany, 1990. [Google Scholar]
- Blinder, S.M. Propagators from integral representations of Green’s functions for the N-dimensional free particle, harmonic oscillator and Coulomb problems. J. Math. Phys. 1984, 25, 905–909. [Google Scholar] [CrossRef] [Green Version]
- Glasser, M.L.; Nieto, L.M. The energy level structure of a variety of one-dimensional confining potentials and the effects of a local singular perturbation. Can. J. Phys. 2015, 93, 1588–1596. [Google Scholar] [CrossRef] [Green Version]
- Junker, G. Supersymmetric Dirac Hamiltonians in (1+1) dimensions revisited. Eur. Phys. J. Plus 2020, 135, 464. [Google Scholar] [CrossRef]
- Inomata, A.; Junker, G. Power Law Duality in Classical and Quantum Mechanics. Symmetry 2021, 13, 409. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junker, G. On the Supersymmetry of the Klein–Gordon Oscillator. Symmetry 2021, 13, 835. https://doi.org/10.3390/sym13050835
Junker G. On the Supersymmetry of the Klein–Gordon Oscillator. Symmetry. 2021; 13(5):835. https://doi.org/10.3390/sym13050835
Chicago/Turabian StyleJunker, Georg. 2021. "On the Supersymmetry of the Klein–Gordon Oscillator" Symmetry 13, no. 5: 835. https://doi.org/10.3390/sym13050835
APA StyleJunker, G. (2021). On the Supersymmetry of the Klein–Gordon Oscillator. Symmetry, 13(5), 835. https://doi.org/10.3390/sym13050835