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Abstract: We consider a model of noncommutative gravity that is based on a spacetime with
broken local SO(2,3)? symmetry. We show that the torsion-free version of this model is contained
within the framework of the Lorentz-violating Standard-Model Extension (SME). We analyze in
detail the relation between the torsion-free, quadratic limits of the broken SO(2,3)? model and the
Standard-Model Extension. As part of the analysis, we construct the relevant geometric quantities to
quadratic order in the metric perturbation around a flat background.
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1. Introduction

While noncommutative geometry has been studied for more than 70 years [1], it has been
especially popular as a possible framework for physics beyond the Standard Model in recent
decades [2,3]. In particular, several extensions to general relativity that incorporate noncommutative
geometry have been proposed [4–10]. In this paper, we consider one particular model that is based on
a flat spacetime with broken SO(2,3)? symmetry [11,12].

Any physical model that includes noncommutative effects and that reduces to conventional
physics in the proper limit is expected to break Lorentz symmetry [13]. A general framework for
the study of Lorentz violation has been developed over the last 30 years [14–18]. Indeed, numerous
experimental and observational limits exist already on many different a priori independent types of
Lorentz violation [19]. Additionally, this effective-field-theory framework should contain any realistic
noncommutative model. This has already been shown for non-gravitational models [13]. In this work,
we argue that the noncommutative SO(2,3)? gravity model also fits into the gravitational sector of
the Standard-Model Extension (SME). This serves as an example of the general notion that the SME
contains all specific action-based Lorentz-violating models.

2. Noncommutative SO(2,3)? Gravity

Consider a model consisting of a flat four-dimensional spacetime with an SO(2,3) gauge field [12].
Suppose that this symmetry is spontaneously broken along a timelike direction, with the field in
that direction achieving a vacuum expectation value `. The corresponding action takes the form
of a model of gravity, with pieces corresponding to Einstein–Hilbert terms, cosmological-constant
terms, and Gauss-Bonnet terms; this action is symmetric under an SO(1,3) subgroup of the broken
SO(2,3) symmetry. If conventional field products are then translated into Moyal–Weyl ?-products
and a Seiberg–Witten map is used to re-express quantities in terms of commutative products, we get
a broken-SO(2,3)? gravitational theory.
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This process has been carried out in Ref. [12] and we present the relevant results here. This theory
may be expressed as a model with noncommutative local SO(1,3)? symmetry. The result is expanded
in terms of the noncommutative background θαβ, with leading terms at second order in this quantity.
To display the action, we note that the geometric quantities that will appear use conventional notation:
eµ

a is the vierbein (with determinant e), ωγ
ab is the associated spin connection, Γρ

γα are the Christoffel
symbols associated with spacetime metric gαβ, Rαβγδ is the Riemann tensor, Rαβ is the Ricci tensor,
and R is the curvature scalar.

Once spacetime torsion Tλµν is set to zero, the action for the model ([12], Equation (4.2)) may be
expressed in the form

SNCR = − 1
2κ

∫
d4x e

[
R− 6

`2 (1 + c2 + 2c3)
]

+ 1
16κ`4

∫
d4x ∑6

u=1 eθαβθγδC(u)L
(u)
αβγδ ,

(1)

where κ = 8πGN and ` is a length parameter. The antisymmetric coefficients θαβ are to be thought of
as a fixed background field describing the degree of noncommutativity of spacetime. Note that natural
units are adopted (h̄ = c = 1), which implies that ` has units of length or inverse mass and θ has units
of length squared.

The top row of Equation (1) is the action for conventional general relativity with a cosmological
constant Λ = −3

(
1 + c2 + 2c3

`2

)
. (Note that this is the correct value of the cosmological constant only in

the commutative limit θ = 0. For θ 6= 0, other terms in the action will also effectively contribute to
it.) The parameters c2 and c3 describe the relative weights of various contributions to the unbroken
SO(2,3)? action. Thus, the action SCNR may be thought of as a family of actions parameterized by c2, c3,
and `. The tensors L(u)

αβγδ are geometric quantities; the weights C(u) measure the relative contributions
of these quantities to the action. The tensors and their weights are listed in Table 1.

Table 1. Geometric quantities and their weights that appear in the action SCNR.

u Weight C(u) Geometric Quantity L(u)
αβγδ

1 3c2 + 16c3 Rαβγδ

2 −6− 22c2 − 36c3 gβδRαγ

3 1
`2 (6 + 28c2 + 56c3) gαγgβδ

4 −4− 16c2 − 32c3 eµ
a eβb(∇̃γea

α)(∇̃δeb
µ)

5 4 + 12c2 + 32c3 eδaeµ
b (∇̃αea

γ)(∇̃βeb
µ)

6 2 + 4c2 + 8c3 gβδeµ
a eν

b [(∇̃αea
ν)(∇̃γeb

µ)− (∇̃γea
µ)(∇̃αeb

ν)]

The adjusted covariant derivatives ∇̃µ of the vierbein that appear in terms 4 through 6 include
contributions from the SO(1,3) connection but not from the Christoffel symbols:

∇̃γeα
a = ∂αeα

a + ωγ
abeab = ∇γeα

a + Γρ
γαeρ

a . (2)

If the vierbein satisfies the usual compatibility condition ∇γeα
a = 0, then the adjusted covariant

derivative may be expressed as
∇̃γeα

a = Γρ
γαeρ

a . (3)

This implies the explicit appearance of the Christoffel symbols in the Lagrangian, the consequences
of which are discussed in the next section.

The model acts like a relativistic theory of gravity in several ways, but there are some issues with
interpreting it as such. For example, it is derived with the assumption that ∂αθµν = 0. This assumption
is reasonable in the original flat-spacetime context of the model. However, if the model is to be
interpreted in curved spacetime, this assumption is clearly coordinate dependent. We may attempt
to fix this issue by instead assuming that ∇αθµν = 0, but even this condition cannot apply in many
situations. Nonzero tensor fields with vanishing covariant derivative cannot exist on many manifolds,
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including, say, spacetime with a Schwarzschild metric [15,20]. Therefore, if we wish to seriously
consider action 1 to represent a theory of gravity, then we must consider it to be an approximation
to a more realistic model with ∇αθµν 6= 0. In what follows, we will assume that terms involving
derivatives of θµν that may appear in a more-realistic model are negligible in comparison to all other
terms.

3. Gravitational Sector of the Lorentz-Violating Standard-Model Extension

The full action [15] describing the gravitational sector of the SME can be expressed as a sum of
terms, each of which contracts a coefficient with spacetime indices with geometric quantities such as
the Riemann tensor Rαβγδ, the torsion Tλµν, and their covariant derivatives:

Sgravity =
1

2κ

∫
d4x e

[
(kT)

λµνTλµν + (kR)
κλµνRκλµν + (kDT)

κλµνDκTλµν + · · ·
]

. (4)

The tensors kT , kR, etc. are coefficients for Lorentz and diffeomorphism violation and the ellipses
represent terms with higher powers of curvature and torsion and derivative terms [21,22]. Note that
a violation of local Lorentz symmetry generically implies a violation of diffeomorphism symmetry,
as explained in the literature [15,23]. As with θµν, it is not possible for the coefficients to be covariant
derivative constants on most spacetime manifolds, and so they must be functions of spacetime position,
though we may assume that their partial derivatives are negligible in experimentally relevant frames.

In this work, we consider two limits of this full action: the minimal set of terms necessary for
Lorentz violation and the weakly-curved-spacetime limit (or quadratic limit) of the full action.

3.1. Covariant Match

In the gravity sector of the fully observer-covariant SME, the minimal set of terms that arises are
given by the action [15],

SLV,cov =
1

2κ

∫
d4x e

[
R + (kR)αβγδRαβγδ

]
, (5)

where (kR)αβγδ are the 20 (background) coefficients for local Lorentz and diffeomorphism violation.
It is clear that there is overlap with the noncommutative model Equation (1). However, there are no
terms in the SME containing explicit dependence on the non-tensorial connection coefficients Γα

βγ.
It is important at this stage to distinguish two types of symmetry transformations. The first is

called an observer diffeomorphism, or general coordinate transformation, which is a diffeomorphism
that affects both the background, (kR)αβγδ and the dynamical fields eµ

a. The second is called a particle
diffeomorphism, which is a diffeomorphism that leaves the background (kR)αβγδ unchanged while the
dynamical fields eµ

a transform in the usual way. It is this second type of symmetry breaking, particle
diffeomorphism symmetry breaking, that is described by the SME approach and is broken by the
second term in Equation (5). Because the action terms in the SME are scalars under general coordinate
transformations, they trivially satisfy observer symmetry. These points are discussed in more detail in
the literature [15,24,25].

The explicit appearance of Γρ
γα in terms 4–6 of Equation (1) implies that each of these terms is not

symmetric under observer diffeomorphisms. Whether the model can be massaged into an observer
covariant form, for example by a special choice of the parameters c2 and c3, remains to be shown. Note
that the model does appear covariant under observer local Lorentz transformations while breaking
particle local Lorentz symmetry. Despite the difficulty, we can proceed at the quadratic-action level,
where a model that breaks observer diffeomorphism invariance cannot be distinguished from a model
that breaks particle diffeomorphism invariance.
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3.2. Linearized Lorentz-Violating Standard-Model Extension

If we restrict the full SME to a version with equations of motion that are linear in hµν [26–28], then
the action takes the form, after a rescaling by 1/2κ,

S =
∫

d4x

[
L0 +

1
8κ hµν ∑

d
K̂(d)µνρσhρσ

]
. (6)

In this expression, L0 = e(R− 2Λ)/2κ is the usual quadratic Einstein–Hilbert Lagrange density
and hµν := gµν − ηµν is the metric perturbation, assumed to be small. The K̂(d)µνρσ are general
derivative operators formed from background coefficients and derivatives. The summation is over the
mass dimension d of the operators. In general, apart from surface terms, this sum includes 14 classes
of irreducible representations involving tensors and derivative operators, all detailed in [28].

A primary goal of this paper is to argue that the non-commutative (broken-)SO(2,3)? action SNCR
in the linearized limit is a special case of this general linearized Lorentz-violating action. We explicitly
calculate the map that shows this correspondence. We will show that the subset of the operator terms
in the action Equation (6) that occur in the non-commutative model Equation (1) can be written as

SLV,NC = 1
8κ

∫
d4x hµν

{[
s(4)µρανσβ + s(4,1)µρνσαβ + s(4,2)µρανσβ + k(4,3)µανβρσ

]
∂α∂β

+ s(2,1)µρνσ + k(2,1)µνρσ
}

hρσ.
(7)

Each of these terms has distinct tensor symmetries described by a particular Young tableau [29].
The coefficients with the (4, #) label are coefficients for mass dimension 4 operators, while those
without derivatives labeled (2, #) are coefficients for mass dimension 2 operators. The latter represent
an arbitrary mass matrix for the gravitational fluctuations hµν. Incidently, none of the terms in
Equation (1) contain odd mass dimension operators, and therefore the CPT symmetry is maintained.

4. Connecting NC SO(3,2)? Gravity to the SME

The action for any linearized theory of gravity is quadratic in the perturbation hµν. Therefore,
we need to calculate each of the quantities that appears in SNCR to second order in hµν. Calculations
of these quantities to first order are widespread in the literature, but calculations to second order
are not, so we summarize the key results in the Appendix. With these formulæ, we may expand the
noncommutative action SNCR in powers of hµν. The results may then be manipulated into the form of
the linearized action Equation (6).

First, we show the match to the SME for the massive u = 3 term. Expanding this term from
Equation (1) in the quadratic action limit, we obtain

SNC,Mass =
C(3)

16κ`6

∫
d4xeθαβθγδgαγgβδ

= 1
8κ

∫
d4x
{C(3)

2`6

(
θ2 +

[
1
2 θ2ηµν + 2θα

µθαµ
]

hµν

)
+

C(3)
16`4 hµν

[
θ2ηµνηρσ − 2θ2ηµρηνσ + 8θα

µθανηρσ + 8θµρθνσ
]

hρσ

}
,

(8)

where θ2 := θµνθµν. Note that all indices on the right-hand sides of these expressions are raised and
lowered with η, as they are considered to act in the flat spacetime with field hµν. The first term with
just θ2 is a constant and irrelevant for dynamics, while the second term linear in hµν acts as a constant
contribution to the stress-energy tensor (of the form of a cosmological constant). The last line can
be matched to the last two terms in Equation (7) using Young tableau projections. The coefficients
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appearing, s(2,1)µρνσ and k(2,1)µνρσ, correspond to the Young tableaus
µ ν
ρ σ and µ ν ρ σ , respectively.

The explicit results we find are

s(2,1)µρνσ =
C(3)
12`4

[
2ηµνθραθσ

α + 2ηρσθµαθν
α − 2ηρνθσαθ

µ
α − 2ηµσθραθν

α

+ 2θρνθσµ + 4θρµθσν + 2θµνθρσ + (ηρσηµν − ηρνησµ) θ2] ,

k(2,1)µνρσ =
C(3)
48`4

[
4ηµνθραθσ

α + 4ηρσθµαθν
α + 4ηρνθσαθ

µ
α + 4ηµσθραθν

α

+4ησνθραθ
µ

α + 4ηρµθσαθν
α − (ηρσηµν + ηρνησµ + ηρµησν) θ2] .

(9)

We classify the remaining terms in Equation (1) as kinetic terms that only involve mass dimension
4 operators. After expanding these terms in the quadratic-action limit and manipulating the result into
the form of Equation (7), we obtain

SNC,Kin =
1

8κ

∫
d4x hµν(KNC)

µνρσαβ∂α∂βhρσ, (10)

where the quantity (KNC)
µνρσαβ is given by

(KNC)
µνρσαβ = 1

16`4 (2C(1) − 2C(2) + C(4))(η
αβθρνθσµ + ηαβθρµθσν)

+ 1
64`4 (4C(1) − 2C(2) + C(4))

(
{(ηναθβρθσµ − ησαθβµθρν + ηνβθαρθσµ − ησβθαµθρν)

+ (ρ ⇀↽ σ)}+ {µ ⇀↽ ν}
)

+ 1
16`4 (2C(1) + C(2) − C(5))

(
ηµνθραθβσ + ηρσθµαθβν + ηµνθρβθασ + ηρσθµβθαν

)
+ 1

16`4 (C(2) − C(6))
(
{( 1

2 ησαηβνθργθ
µ

γ + 1
2 ησβηανθργθ

µ
γ − ησνηαβθργθ

µ
γ) + (µ ⇀↽ ν)

+ ηρνησµθαγθ
β

γ}+ {ρ ⇀↽ σ} − 2ηρσηµνθαγθ
β

γ

)
+ 1

16`4 C(1)
(
{(ησνθραθβµ + ησνθρβθαµ) + (µ ⇀↽ ν)}+ {ρ ⇀↽ σ}

)
.

(11)

At this stage, one can project Equation (11) into the irreducible tensors that appear in Equation (7).
Consider the first coefficients, s(4)µρανσβ, for which the operator it is contracted with, ∼ h∂∂h, is

a gauge invariant combination (invariant under the transformation δhµν = −∂µξν − ∂νξµ). Calculation
with Young Tableau projection PY reveals

s(4)µρανσβ = P

µ ν
ρ σ
α β

Y (KNC)
µνρσαβ

= 1
36`4 (2C(1) − 3C(2) + C(4) + C(5))

( 1
2 ηρσθανθβµ − 1

2 ηνρθασθβµ + ηρσθαµθβν + ...
)
,

(12)

where the ellipses stand for the remaining symmetrizing terms. The explicit terms are not shown for
brevity and because this contribution can be more profitably expressed using an equivalent two-tensor
set of coefficients defined by

sγδ = − 1
36 εµραγενσβδs(4)µρανσβ. (13)

Employing this, the portion of the Lagrangian containing the s(4) coefficients can be expressed as

LLV,NC ⊃ 1
4κ

∫
d4xhµνsκλGµκνλ, (14)

where, for the non-commutative model under study, we have

sκλ = − 1
24`4 (2C(1) − 3C(2) + C(4) + C(5))

(
θκαθ α

λ − 1
4 ηκλθ2

)
, (15)

and we have removed the trace of these coefficients since they contribute only as a scaling of GR at
this level. This result shows that the non-commutative model overlaps with, in part, the minimal SME
gravity sector in the weak-field limit. In this model, the nine coefficients sκλ are evidently controlled
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by the six non-commutative parameters θαβ. Note that the size of these coefficients depends on the
relative size of the non-commutative parameters and the the length parameter `.

For the other classes of coefficients appearing in Equation (7), we can proceed in a similar fashion
with the Young Tableau projection. All terms are summarized in Table 2 below. The explicit expressions
for the Young projections are lengthy and omitted here for brevity, but they can be calculated with
standard methods [29].

Table 2. Young Projections for the kinetic portion of the NC action.

SME Coefficients Young Projection

s(4)µρανσβ P

µ ν
ρ σ
α β

Y (KNC)
µνρσαβ

s(4,1)µρνσαβ P
µ ν α β
ρ σ

Y (KNC)
µνρσαβ

s(4,2)µρανσβ P

µ ν β
ρ σ
α

Y (KNC)
µνρσαβ

k(4,3)µανβρσ P
µ ν ρ σ
α β

Y (KNC)
µνρσαβ

5. Conclusions, Prospects for Further Work

We have shown that the model proposed in Ref. [12], in its quadratic limit, is a subset of the
Lorentz- and diffeomorphism-violating Standard-Model Extension. The main results are understood
as a series of Young Tableau maps described in Section 4.

One consequence of the match obtained relates to experimental and observational constraints on
the noncommutative model considered. For the gauge-preserving portion of the Lagrangian, for which
the observable effects are controlled by the sµν coefficients, an extensive study of phenomenology
has been performed [30–34]. To date, numerous experiments and observations have reported
measurements on these coefficients [19,35,36]. The best current astrophysical limits come from a recent
comparison of the arrival times of electromagnetic and gravitational waves from a pair of colliding
neutron stars [37]. Lunar laser ranging and ground-based gravimetry also place limits on these
coefficients [38–41]. The best limits imply constraints on the order of sµν < 10−14. Heuristically then,
this would imply that the non-commutivity coefficients θαβ and the length parameter ` are related
by θ2/`4 < 10−15. However, a more precise statement would require a thorough phenomenological
analysis of the diffeomorphism-violating terms in Section 4 above.

It would be of interest to explore the role of additional terms in the non-commutative model, as
in Ref. [11] that involve higher derivatives. These terms have been generally classified in the SME
approach and a match should exist [28].
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Appendix A. Geometric Quantities to 2nd Order in the Metric Perturbation

Consider a pair of theories. The first operates in curved-spacetime, including a manifoldM,
a metric gµν, a local flat metric for tangent spaces ηab, and a set of vierbein eµ

a that relate the metrics
through gµν = eµ

aeν
bηab. (Equivalently, the vierbein may be thought of as a position-dependent
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change-of-basis matrix that relates a manifold coordinate basis {~vµ} to a local tangent-space basis
{~ua}.) The second theory operates in a flat spacetime with an auxiliary field hµν. For this theory,
the manifold is simply R4, the manifold metric is ηµν, the tangent-space metric is ηab, and global
coordinates may be found so that the vierbein is just the Kronecker delta δµ

a.
A perturbation scheme is a map

(M, gµν, ηab, eµ
a)→ (R4, ηµν, ηab, δµ

a) + hµν (A1)

between these theories so that they approximately describe the same physical effects. In particular,
we will consider situations where gµν ≈ ηµν, so that the map may be nicely approximated by a power
series in gµν − ηµν. We wish to calculate an action in terms of hµν that mimics the physical effects of
the original theory up to order h2.

The first piece of the map is defined by the correspondence

gµν = ηµν + hµν . (A2)

This is the definition of hµν and hence is correct to all orders in h. Our goal in this section is to
find expressions for other geometric quantities gµν, eµ

a, and so on that appear in the action of the full
theory. The formulas for these quantities should only involve the flat-spacetime tensors hµν, ηµν, ηab,
and δµ

a.
It is important to note that the defining map Equation (A2) is not a tensor equation in the original

spacetime. This implies that indices on hµν cannot be raised and lowered like the indices of true tensors.
That is, hµν is not equal to gµαgνβhαβ. The geometry of the original manifold does not by itself define
a unique value of such quantities, and we have some freedom in choosing our definition of them.
The most convenient choice is defining them so that hµν acts like a true tensor in the flat spacetime.
That is, we pick hµ

ν := ηµαhαν, hµν := ηµαηνβhαβ, etc. Similarly, we may choose to relate global and
tangent-space indices with the flat-space veirbein δµ

a: hµa := hµνδν
a, hµ

a := hµνηνλδa
λ, etc.

The raised-index metric gµν may then be evaluated to second order in hµν through the following
strategy. The fundamental definition of gµν is that it is the matrix inverse of gµν:

δµ
λ = gµνgνλ . (A3)

We proceed by using the ansatz gνλ = ηνλ + jνλ + kνλ + o(h3) where jνλ is first order in h and kνλ

is second order. If we insist that Equation (A3) hold order-by-order in h, then we need

jαλ = −ηαµηνλhµν and kαλ = ηαµηνβηλγhµνhβγ . (A4)

Using the definitions of upper-index h quantities described in the previous paragraph, we may
then write

gµν = ηµν − hµν + hµαhα
ν + o(h3) . (A5)

Note again that gµν 6= ηµν + hµν as the breakdown of gµν into ηµν + hµν is not a true
tensor operation.

The quadratic approximation for the vierbein may be calculated by using the ansatz
eµ

a = δµ
a + fµ

a + `µ
a + o(h3), where f is first order in h and ` is second order, and insisting

that the exact relation
gµν = eµ

aeν
bηab (A6)

hold order-by-order in h. This results in the expression

eµ
a = δµ

a + 1
2 hµ

a − 1
8 hµλhλa + o(h3) , (A7)
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where again h quantities are related to each other with the flat-spacetime metrics ηµν, ηab and
flat-spacetime vierbein δµ

a. Explicitly, hµ
a := ηνρδρ

ahµν and hλa := ηλµηνρδρ
ahµν.

Once we have these, calculations of other geometric quantities are rather straightforward
if tedious.

Metric:
gµν = ηµν + hµν ,
gµν = ηµν − hµν + hµαhα

ν + o(h3) .
(A8)

Vierbein:
eµ

a = δµ
a + 1

2 hµ
a − 1

8 hµλhλa + o(h3) ,
eµa = ηµa +

1
2 hµa − 1

8 hµλhλ
a + o(h3) ,

eµa = ηµa − 1
2 hµa + 3

8 hµ
λhλa + o(h3) ,

eµ
a = δµ

a − 1
2 hµ

a +
3
8 hµλhλa + o(h3) ,

e := det(eµ
a) = 1 + 1

2 hµ
µ + 1

8 (hµ
µhν

ν − 2hµ
νhν

µ) + o(h3) .

(A9)

Note again that the expressions for the vierbein quantities cannot be related to each other simply
by raising and lowering indices: eµa 6= ηµλeλ

a, etc. Note also that the index placement in the
definition of e is important: det(eµ

a) =
1

det(eµ
a)

.

Connection coefficients:

Γαµν = 1
2 (∂µhνα + ∂νhµα − ∂αhµν) ,

Γα
µν = 1

2 (η
ασ − hασ)(∂µhνσ + ∂νhµσ − ∂σhµν) + o(h3) ,

ωµ
ab =

[
− 1

2 ∂ahµ
b +− 1

8 haλ∂µhλ
b + 1

4 haλ∂λhµ
b − 1

4 haλ∂bhλµ

]
−
[

a ⇀↽ b
]
+ o(h3) .

(A10)

Derivative compatibility:
∇γgµν = 0 ,
∇γeµ

a = 0 .
(A11)

Riemann tensor:

Rαβµν =
[(
− 1

2 ∂α∂µhβν − 1
8 ∂αhµλ∂βhν

λ − 1
8 ∂µhαλ∂νhβ

λ − 1
8 ∂λhαµ∂λhβν

− 1
4 ∂αhµλ∂νhβ

λ + 1
4 ∂αhµλ∂λhβν +

1
4 ∂µhαλ∂λhβν

)
−
(

α ⇀↽ β
)]
−
[
µ ⇀↽ ν

]
+ o(h3). (A12)

Ricci tensor:

Rαµ = gβνRαβµν =
[

1
2 ∂α∂λhµ

λ − 1
4 ∂α∂µhλ

λ − 1
4 ∂λ∂λhαµ

− 1
2 hλρ

(
∂α∂λhµρ − 1

2 ∂α∂µhλρ − 1
2 ∂λ∂ρhαµ

)
+
(

1
4 ∂λhρ

ρ − 1
2 ∂ρhρλ

)(
∂αhµ

λ − 1
2 ∂λhαµ

)
− 1

4 (∂λhµ
ρ)
(

∂ρhα
λ − 1

2 ∂λhαρ

)
+ 1

8 (∂αhλρ)(∂µhλρ)
]
+
[
α ⇀↽ µ

]
+ o(h3).

(A13)
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