The Stoichiometry, Structure and Possible Formation of Crystalline Diastereomeric Salts
Abstract
:1. Introduction
2. The Stoichiometry of the Crystalline Diastereomeric Salt May Be Determined by the Eutectic Composition of Either the Racemic Compound or the Resolving Agent
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pálovics, E.; Szeleczky, Z.; Fődi, B.; Faigl, F.; Fogassy, E. Prediction of the efficiency of diastereoisomer separation on the basis of the behaviour of enantiomeric mixtures. RSC Adv. 2014, 4, 21254–21261. [Google Scholar] [CrossRef] [Green Version]
- Pálovics, E.; Szeleczky, Z.; Fogassy, E. Influence of Helical Structured Supramolecular Associates and that of Eutectic Composition on the Distribution of Enantiomeric and Diastereomeric Mixtures between Phases. Chem. Bull. Politeh. Univ. 2016, 61, 40–43. [Google Scholar]
- Pálovics, E.; Fogassy, E. A Presumable Mechanism of the Separation of Diastereomeric and Enantiomeric Mixtures. J. Chromatogr. Sep. Tech. 2017, 8, 391. [Google Scholar]
- Pálovics, E.; Fogassy, E. Aszimmetrikus vegyületek keverékeinek viselkedése és elválasztása. Magyar Kémiai Folyóirat 2018, 124, 56. [Google Scholar] [CrossRef]
- Soloshonok, V.A. Remarkable Amplification of the Self-Disproportionation of Enantiomers on Achiral-Phase Chromatography Columns. Angew. Chem. Int. Ed. 2006, 45, 766–769. [Google Scholar] [CrossRef]
- Soloshonok, V.A. Phenomenon of Optical Self-Purification of Chiral Non-Racemic Compounds. J. Am. Chem. Soc. 2007, 129, 12112–12113. [Google Scholar] [CrossRef]
- Han, J.; Kitagawa, O.; Wzorek, A.; Klika, K.D.; Soloshonok, V.A. The self-disproportionation of enantiomers (SDE): A menace or an opportunity? Chem. Sci. 2018, 9, 1718–1739. [Google Scholar] [CrossRef] [Green Version]
- Kodama, K.; Yi, M.; Shitara, H.; Hirose, T. Chirality switching in the enantioseparation of 2-hydroxy-4-phenylbutyric acid: Role of solvents in selective crystallization of the diastereomeric salt. Tetrahedron Lett. 2020, 61, 151773. [Google Scholar] [CrossRef]
- Tumanova, N.; Seiler, V.; Tumanov, N.; Robeyns, K.; Filinchuk, Y.; Wouters, J.; Leyssens, T. Structural Analysis of d-Phenylglycinamide Salts Uncovers Potential Pitfalls in Chiral Resolution via Diastereomeric Salt Formation. Cryst. Growth Des. 2019, 19, 3652–3659. [Google Scholar] [CrossRef]
- Simon, M.; Donnellan, P.; Glennon, B.; Jones, R.C. Resolution via Diastereomeric Salt Crystallization of Ibuprofen Lysine: Ternary Phase Diagram Studies. Chem. Eng. Technol. 2018, 41, 921–927. [Google Scholar] [CrossRef]
- Córdova-Villanueva, E.N.; Rodríguez-Ruiz, C.; Sánchez-Guadarrama, O.; Rivera-Islas, J.; Herrera-Ruiz, D.; Morales-Rojas, H.; Höpfl, H. Diastereomeric Salt Formation by the γ-Amino Acid RS-Baclofen and L-Malic Acid: Stabilization by Strong Heterosynthons Based on Hydrogen Bonds between RNH3+ and COOH/COO– Groups. Cryst. Growth Des. 2018, 18, 7356–7367. [Google Scholar] [CrossRef]
- Sorochinsky, A.E.; Aceña, J.L.; Soloshonok, V.A. Self-Disproportionation of Enantiomers of Chiral, Non-Racemic Fluoroorganic Compounds: Role of Fluorine as Enabling Element. Synthesis 2013, 45, 141–152. [Google Scholar] [CrossRef]
- Soloshonok, V.A.; Roussel, C.; Kitagawa, O.; Sorochinsky, A.E. Self-disproportionation of enantiomers via achiral chromatography: A warning and an extra dimension in optical purifications. Chem. Soc. Rev. 2012, 41, 4180–4188. [Google Scholar] [CrossRef]
- Ueki, T.; Yasumoto, M.; Soloshonok, V.A. Rational application of self-disproportionation of enantiomers via sublimation—A novel methodological dimension for enantiomeric purifications. Tetrahedron Asymmetry 2010, 21, 1396–1400. [Google Scholar] [CrossRef]
- Sorochinsky, A.; Soloshonok, A. Self-disproportionation of Enantiomers of enantiomerically enriched Compounds. Top Curr. Chem. 2013, 21, 301–340. [Google Scholar] [CrossRef]
- Sorochinsky, A.E. Optical Purifications via Self-Disproportionation of Enantiomers by Achiral Chromatography: Case Study of a Series of α-CF3-containing Secondary Alcohols. Chirality 2013, 25, 365–368. [Google Scholar] [CrossRef]
- Marthi, K.; Larsen, S.; Ács, M.; Bálint, J.; Fogassy, E. The Optical Resolution of 3-(2′-Hydroxy-2′-phenylethyl)-2-thiazolidinimine and the Crystal Structure of the (2R,3R)-O,O’-Dibenzoyl Hydrogen Tartrate Salt of the (S)-(+)-Enantiomer. Acta Chem. Scand. 1995, 49, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Bosits, M.H.; Pálovics, E.; Madarász, J.; Fogassy, E. New Discoveries in Enantiomeric Separation of Racemic Tofisopam. J. Chem. 2019, 4980792. [Google Scholar] [CrossRef]
- Czugler, M.; Csöregh, I.; Kálmán, A.; Faigl, F.; Ács, M. Crystal structures of the diastereomeric salt pair of the prostaglandin intermediate 1R, 2S(+)-cis-2-hydroxycyclopent-4-enylacetic acid with S- and R- 1-phenylethylamine. J. Mol. Struct. 1989, 196, 157–170. [Google Scholar] [CrossRef]
- Fogassy, E.; Ács, M.; Faigl, F.; Simon, K.; Rohonczky, J.; Ecsery, Z. Pseudosymmetry and chiral discrimination in optical resolution via diastereoisomeric salt formation. The crystal structures of (R)- and (S)-N-methylamphetamine bitartrates (RMERTA and SMERTA). J. Chem. Soc. Perkin Trans II 1986, 11, 1881–1886. [Google Scholar] [CrossRef]
- Rusznák, I.; Soós, R.; Fogassy, E.; Ács, M.; Ecsery, Z. Eljárás optikailag aktív N-alfa-dimetil-béta-fenil-etilamin antipódok előállítására. Hung. Pat. no. 169845, 1976. [Google Scholar]
- Rusznák, I.; Soós, R.; Fogassy, E.; Ács, M.; Ecsery, Z. Eljárás D- és L-N-alfa-dimetil-béta-(p-htt-fenil)-etilaminok előállítására. Hung. Pat. no. 169844, 1976. [Google Scholar]
- Kozma, D.; Madarász, J.; Kassai, C.S.; Fogassy, E. Optical resolution of N-methylamphetamine via diastereoisomeric salt formation with 2R,3R-O,O′-di-p-toluoyltartaric acid. Chirality 1999, 11, 373–375. [Google Scholar] [CrossRef]
- Ács, M.; Faigl, F.; Fogassy, E. Diastereomer salts of phenylalanine and N-acyl derivatives for the separation of optically active phenylalanine and N-acyl derivatives. WO 8503932 A1 19850912, 1985. [Google Scholar]
- Kőnig, R.; Földy, Z. Eljárás optikailag aktív stereomerek elválasztására. Hung. Pat. 146896, 1958. [Google Scholar]
- Soós, R.; Fogassy, E.; Nagy, F.; Horváth, K.; Boros, K.; Résey, F.; Nagy, K.; Galambos, T.; Alföldi, I. Eljárás D-(-)-treo-(4′-nitro-fenil)-2-amino-propán-1,3-diol előállítására. Hung. Pat. 163526, 1984. [Google Scholar]
- Soós, R.; Fogassy, E.; Gressay, J.; Erdélyi, A. Eljárás aszparagin nagy tisztaságú izomerjeinek előállítására. Hung. Pat. 165115, 1981. [Google Scholar]
- Tőke, L.; Szabó, G.; Fogassy, E.; Ács, M.; Nagy, L.; Árvai, L. Eljárás a racém cisz-2-hidroxi-ciklopent-4-én-1-il-ecetsav alkálifémsóinak és laktonjának optikailag aktív alfa-fenil-etilaminnal történő rezolválására. Hung. Pat. 177583, 1978. [Google Scholar]
- Pálovics, E.; Közös, A. Rokon Molekulaszerkezetű Vegyületek a Reszolválás Folyamataiban. Ph.D. Thesis, Budapest University of Technology and Economics, Budapest, Hungary, 2008. [Google Scholar]
- Geipel, H. Die Racematspaltung des DL-Phenylalanins mit L(+)-threo-1-[p-Nitrophenyl]-2-aminopropandiol-(1,3). J. Prakt. Chem. 1959, 9, 104–106. [Google Scholar] [CrossRef]
Entry | Racemic Bases | Resolving Agent | Diastereomer | eeDia (%) | F |
---|---|---|---|---|---|
1 [21,22,23] | | | (R)-MeAn.(R,R)-TA | 95 | 0.64 |
2 [21,22,23] | | | (R)-MeAn.(R,R)-DPTA | 68.8 | 0.46 |
3 [24] | | | (R)-FA.(R,R)-DPTA | 96 | 0.86 |
4 [24] | | | (S)-FA.(R)-BFA | 99 | 0.80 |
5 [25,26] | | | (R,R)-AD.(R,R)-DPTAD | 97 | 0.93 |
6 [27] | | | (R)-ASG.(R,R)-DPTA | 86.3 | 0.69 |
7 [19] | | | (R)-FEA.(1S,5R)-CPN | 95 | 0.51 |
Diastereomer 7 | Diastereomers 1–3, 6 | Diastereomer 5 | Diastereomer 4 | Diastereomers 8–16 |
---|---|---|---|---|
| | | | |
Entry | Racemic acids | Resolving agent | Diastereomer | eeDia (%) | F |
---|---|---|---|---|---|
8 [28] | | | (1S,5R)-CPN.(R)-FEA | 81.5 | 0.55 |
9 [29] | | | (R)-FoEA.(R)-FEA | 91 | 0.40 |
10 [29] | | | (R)-AcEA.(R)-FEA | 89 | 0.55 |
11 [30] | | | (S)-AcEA.(R,R)-AD | 76 | 0.51 |
12 [29] | | | (S)-PEA.(R,R)-AD | 53 | 0.33 |
13 [29] | | | (R)-FoEA.(R)-FGM | 72 | 0.39 |
14 [29] | | | (S)-AcEA.(R)-FGM | 55 | 0.26 |
15 [29] | | | (S)-AcEG.(R)-FGM | 79 | 0.40 |
16 [29] | | | (R)-PEG.(R)-FGM | 43 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bánhegyi, D.F.; Pálovics, E. The Stoichiometry, Structure and Possible Formation of Crystalline Diastereomeric Salts. Symmetry 2021, 13, 667. https://doi.org/10.3390/sym13040667
Bánhegyi DF, Pálovics E. The Stoichiometry, Structure and Possible Formation of Crystalline Diastereomeric Salts. Symmetry. 2021; 13(4):667. https://doi.org/10.3390/sym13040667
Chicago/Turabian StyleBánhegyi, Dorottya Fruzsina, and Emese Pálovics. 2021. "The Stoichiometry, Structure and Possible Formation of Crystalline Diastereomeric Salts" Symmetry 13, no. 4: 667. https://doi.org/10.3390/sym13040667
APA StyleBánhegyi, D. F., & Pálovics, E. (2021). The Stoichiometry, Structure and Possible Formation of Crystalline Diastereomeric Salts. Symmetry, 13(4), 667. https://doi.org/10.3390/sym13040667