Relaxed Modulus-Based Matrix Splitting Methods for the Linear Complementarity Problem †
Abstract
:1. Introduction
2. Preliminaries
3. Relaxed Modulus-Based Matrix Splitting Method
4. Convergence Analysis
5. Numerical Experiments
6. Conclusions
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cottle, R.W.; Pang, J.-S.; Stone, R.E. The Linear Complementarity Problem; Academic: San Diego, CA, USA, 1992. [Google Scholar]
- Murty, K.G. Linear Complementarity, Linear and Nonlinear Programming; Heldermann: Berlin, Germany, 1988. [Google Scholar]
- Cottle, R.W.; Dantzig, G.B. Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1968, 1, 103–125. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, U. A linear complementarity problem with a P-matrix. SIAM Rev. 2004, 46, 189–201. [Google Scholar] [CrossRef]
- Zheng, N.; Hayami, K.; Yin, J.-F. Modulus-type inner outer iteration methods for nonnegative constrained least squares problems. SIAM J. Matrix Anal. Appl. 2016, 37, 1250–1278. [Google Scholar] [CrossRef] [Green Version]
- Ahn, B.H. Solutions of nonsymmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 1981, 33, 175–185. [Google Scholar] [CrossRef]
- Cryer, C.W. The solution of a quadratic programming using systematic overrelaxation. SIAM J. Control. 1971, 9, 385–392. [Google Scholar] [CrossRef]
- Kappel, N.W.; Watson, L.T. Iterative algorithms for the linear complementarity problems. Int. J. Comput. Math. 1986, 19, 273–297. [Google Scholar] [CrossRef]
- Mangasarian, O.L. Solutions of symmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 1977, 22, 465–485. [Google Scholar] [CrossRef] [Green Version]
- Pang, J.-S. Necessary and sufficient conditions for the convergence of iterativemethods for the linear complementarity problem. J. Optim. Theory Appl. 1984, 42, 1–17. [Google Scholar] [CrossRef]
- Tseng, P. On linear convergence of iterative methods for the variational inequality problem. J. Comput. Appl. Math. 1995, 60, 237–252. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.-Z. On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 1999, 21, 67–78. [Google Scholar] [CrossRef]
- Bai, Z.-Z.; Evans, D. Matrix multisplitting methods with applications to linear complementarity problems: Parallel asynchronous methods. Int. J. Comput. Math. 2002, 79, 205–232. [Google Scholar] [CrossRef]
- Bai, Z.-Z. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 2010, 17, 917–933. [Google Scholar] [CrossRef]
- Van Bokhoven, W.M.G. A Class of Linear Complementarity Problems is Solvable in Polynomial Time; Unpublished Paper; Dept. of Electrical Engineering, University of Technology: Delft, The Netherlands, 1980. [Google Scholar]
- Dong, J.-L.; Jiang, M.-Q. A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 2009, 16, 129–143. [Google Scholar] [CrossRef]
- Hadjidimos, A.; Tzoumas, M. Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 2009, 431, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.-Z.; Zhang, L.-L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 2013, 20, 425–439. [Google Scholar] [CrossRef]
- Bai, Z.-Z.; Zhang, L.-L. Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algor. 2013, 62, 59–77. [Google Scholar] [CrossRef]
- Zheng, N.; Yin, J.-F. Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Algor. 2013, 64, 245–262. [Google Scholar] [CrossRef]
- Zhang, L.-L. Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algor. 2011, 57, 83–99. [Google Scholar] [CrossRef]
- Wu, S.-L.; Li, C.-X. Two-sweep modulus-based matrix splitting iteration methods for linear complementarity problems. J. Comput. Math. 2016, 302, 327–339. [Google Scholar] [CrossRef]
- Li, W. A general modulus-based matrix splitting method for linear complementarity problems of H-matrices. Appl. Math. Lett. 2013, 26, 1159–1164. [Google Scholar] [CrossRef]
- Hadjidimos, A.; Lapidakis, M.; Tzoumas, M. On iterative solution for linear complementarity problem with an H+-matrix. SIAM J. Matrix Anal. Appl. 2011, 33, 97–110. [Google Scholar] [CrossRef]
- Ma, C.-F.; Huang, N. Modified modulus-based matrix splitting algorithms for a class of weakly nondifferentiable nonlinear complementarity problems. Appl. Numer. Math. 2016, 108, 116–124. [Google Scholar] [CrossRef]
- Xia, Z.-C.; Li, C.-L. Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem. Appl. Math. Comput. 2015, 271, 34–42. [Google Scholar] [CrossRef]
- Xie, S.-L.; Xu, H.-R.; Zeng, J.-P. Two-step modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems. Linear Algebra Appl. 2016, 494, 1–10. [Google Scholar] [CrossRef]
- Huang, N.; Ma, C.-F. The modulus-based matrix splitting algorithms for a class of weakly nondifferentiable nonlinear complementarity problems. Numer. Linear Algebra Appl. 2016, 23, 558–569. [Google Scholar] [CrossRef]
- Hong, J.-T.; Li, C.-L. Modulus-based matrix splitting iteration methods for a class of implicit complementarity problems. Numer. Linear Algebra Appl. 2016, 23, 629–641. [Google Scholar] [CrossRef]
- Wu, S.-L.; Guo, P. Modulus-based matrix splitting algorithms for the quasi-complementarity problems. Appl. Numer. Math. 2018, 132, 127–137. [Google Scholar] [CrossRef]
- Mezzadri, F.; Galligani, E. Modulus-based matrix splitting methods for horizontal linear complementarity problems. Numer. Algor. 2020, 83, 201–219. [Google Scholar] [CrossRef]
- Zheng, N.; Yin, J.-F. Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an H+-matrix. J. Comput. Appl. Math. 2014, 260, 281–293. [Google Scholar] [CrossRef]
- Varga, R.S. Matrix Iterative Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1962. [Google Scholar]
- Berman, A.; Plemmons, R.J. Nonnegative Matrices in the Mathematical Sciences; Academic: New York, NY, USA, 1979. [Google Scholar]
- Frommer, A.; Mayer, G. Convergence of relaxed parallel multisplitting methods. Linear Algebra Appl. 1989, 119, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.-W. Modified modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 2015, 22, 748–760. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Ren, Z.-R. Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett. 2013, 26, 638–642. [Google Scholar] [CrossRef]
m | 20 | 30 | 40 | 50 | 60 | ||
---|---|---|---|---|---|---|---|
RMSOR | IT | 25 | 25 | 26 | 27 | 27 | |
CPU | 0.0313 | 0.0313 | 0.0625 | 0.0625 | 0.1094 | ||
RES | 5.908 | 5.819 | 8.472 | 6.027 | 7.469 | ||
MSOR | IT | 51 | 53 | 53 | 54 | 55 | |
CPU | 0.0313 | 0.0781 | 0.0938 | 0.1094 | 0.1875 | ||
RES | 8.427 | 7.753 | 9.798 | 8.895 | 7.782 | ||
RMSOR | IT | 20 | 20 | 21 | 21 | 21 | |
CPU | 0.0313 | 0.0313 | 0.0625 | 0.0625 | 0.0781 | ||
RES | 7.566 | 9.882 | 5.930 | 6.748 | 7.476 | ||
MSOR | IT | 34 | 35 | 35 | 35 | 36 | |
CPU | 0.0313 | 0.0625 | 0.0781 | 0.1094 | 0.0938 | ||
RES | 7.574 | 6.854 | 8.276 | 9.488 | 7.083 | ||
RMSOR | IT | 18 | 18 | 18 | 18 | 18 | |
CPU | 0.0156 | 0.0313 | 0.0313 | 0.0469 | 0.0625 | ||
RES | 4.675 | 5.998 | 7.078 | 8.014 | 8.851 | ||
MSOR | IT | 24 | 24 | 25 | 25 | 25 | |
CPU | 0.0313 | 0.0313 | 0.0625 | 0.0625 | 0.0781 | ||
RES | 7.476 | 9.658 | 6.343 | 7.197 | 7.961 |
m | 20 | 30 | 40 | 50 | 60 | ||
---|---|---|---|---|---|---|---|
RMSOR | IT | 21 | 21 | 22 | 22 | 23 | |
CPU | 0.0156 | 0.0313 | 0.0469 | 0.0469 | 0.0781 | ||
RES | 4.669 | 9.734 | 7.082 | 9.528 | 5.772 | ||
MSOR | IT | 28 | 28 | 29 | 29 | 29 | |
CPU | 0.0313 | 0.0313 | 0.0625 | 0.0938 | 0.1094 | ||
RES | 6.588 | 8.501 | 6.252 | 7.091 | 7.840 | ||
RMSOR | IT | 15 | 15 | 16 | 16 | 16 | |
CPU | 0.0156 | 0.0156 | 0.0469 | 0.0625 | 0.0625 | ||
RES | 8.430 | 4.328 | 5.092 | 5.756 | 6.351 | ||
RSOR | IT | 23 | 23 | 24 | 24 | 24 | |
CPU | 0.0313 | 0.0469 | 0.0625 | 0.0781 | 0.0781 | ||
RES | 6.771 | 8.646 | 5.609 | 6.345 | 7.004 | ||
RMSOR | IT | 15 | 15 | 15 | 15 | 15 | |
CPU | 0.0156 | 0.0313 | 0.0313 | 0.0313 | 0.0469 | ||
RES | 4.011 | 5.077 | 5.955 | 6.719 | 7.405 | ||
RSOR | IT | 19 | 19 | 20 | 20 | 20 | |
CPU | 0.0156 | 0.0313 | 0.0625 | 0.0625 | 0.0938 | ||
RES | 7.112 | 8.999 | 4.977 | 5.617 | 6.191 |
1.4 | 1.6 | 1.8 | 2 | |||
---|---|---|---|---|---|---|
RMSOR | IT | 33 | 30 | 43 | 80 | |
CPU | 0.0313 | 0.0313 | 0.0469 | 0.0938 | ||
RES | 7.452 | 9.803 | 9.105 | 9.712 | ||
RSOR | IT | 38 | 82 | 296 | − | |
CPU | 0.0469 | 0.0781 | 0.3438 | − | ||
RES | 8.648 | 8.408 | 9.475 | − | ||
RMSOR | IT | 50 | 47 | 54 | 107 | |
CPU | 0.0781 | 0.0675 | 0.0938 | 0.25 | ||
RES | 6.121 | 1.691 | 6.982 | 8.419 | ||
RSOR | IT | 57 | 108 | 410 | − | |
CPU | 0.0938 | 0.2344 | 0.5781 | − | ||
RES | 3.915 | 7.102 | 9.266 | − | ||
RMSOR | IT | 65 | 62 | 74 | 129 | |
CPU | 0.1406 | 0.1250 | 0.2188 | 0.3594 | ||
RES | 9.235 | 7.330 | 6.697 | 9.493 | ||
RSOR | IT | 80 | 138 | − | − | |
CPU | 0.1875 | 0.2813 | − | − | ||
RES | 7.557 | 8.111 | − | − | ||
RMSOR | IT | 79 | 76 | 91 | 156 | |
CPU | 0.1719 | 0.1563 | 0.2031 | 0.3438 | ||
RES | 9.926 | 8.954 | 9.862 | 8.250 | ||
RSOR | IT | 100 | 174 | − | − | |
CPU | 0.2188 | 0.3281 | − | − | ||
RES | 9.408 | 8.764 | − | − | ||
RMSOR | IT | 93 | 89 | 110 | 178 | |
CPU | 0.2969 | 0.2813 | 0.3906 | 0.5625 | ||
RES | 7.478 | 9.642 | 9.490 | 8.071 | ||
RSOR | IT | 119 | 211 | − | − | |
CPU | 0.3281 | 0.5938 | − | − | ||
RES | 8.510 | 7.022 | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Li, C.; Agarwal, P. Relaxed Modulus-Based Matrix Splitting Methods for the Linear Complementarity Problem. Symmetry 2021, 13, 503. https://doi.org/10.3390/sym13030503
Wu S, Li C, Agarwal P. Relaxed Modulus-Based Matrix Splitting Methods for the Linear Complementarity Problem. Symmetry. 2021; 13(3):503. https://doi.org/10.3390/sym13030503
Chicago/Turabian StyleWu, Shiliang, Cuixia Li, and Praveen Agarwal. 2021. "Relaxed Modulus-Based Matrix Splitting Methods for the Linear Complementarity Problem" Symmetry 13, no. 3: 503. https://doi.org/10.3390/sym13030503