# Reference Frame Induced Symmetry Breaking on Holographic Screens

^{1}

^{2}

^{3}

^{*}

^{†}

^{‡}

## Abstract

**:**

## 1. Introduction

GHP:If but only if a pair of finite quantum systems A and B have a separable joint state $|AB\rangle =|A\rangle |B\rangle $, there is a finite spacelike surface $\mathcal{B}$, with area $A\left(\mathcal{B}\right)\ge A{\left(\mathcal{B}\right)}_{min}=4\mathrm{ln}2N{l}_{P}^{2}$, N the dimension of ${H}_{AB}$ and ${l}_{P}$ the Planck length, that implements ${H}_{AB}$ as a classical channel.

## 2. Instantaneous Interactions across $\mathcal{B}$

**Lemma**

**1.**

**Proof.**

#### 2.1. Example: Scattering

#### 2.2. Example: Hawking Radiation

#### 2.3. Symmetry across $\mathcal{B}$ Corresponds to “Free Choice” of QRFs

## 3. Reference Frame Induced Decoherence

#### 3.1. QRFs for System Identification

**Lemma**

**2.**

**Proof.**

#### 3.2. Reference and Pointer Measurements

#### 3.3. Sequential Pointer Measurements Induce Decoherence

**Lemma**

**3.**

**Proof.**

[T]he formulation of the measurement problem and its resolution through the appeal to decoherence require a universe split into systems. Yet, it is far from clear how one can define systems given an overall Hilbert space ‘of everything’ and the total Hamiltonian.

#### 3.4. Example: Mass and Hawking Radiation QRFs for a BH

#### 3.5. Computation and Memory Costs Induce Coarse-Graining

## 4. Reference Frame Induced Entanglement

**Theorem**

**1.**

**Proof.**

## 5. Reference Frame Induced Contextuality

**Theorem**

**2.**

**Proof.**

**Corollary**

**1.**

## 6. Writing and Reading Classical Memories

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

BH | Black Hole |

CCD | Cocone Diagram |

CD | Cone Diagram |

EPR | Einstein-Podolsky-Rosen |

ER | Einstein-Rosen |

GHP | Generalized Holographic Principle |

LOCC | Local Operations, Classical Communication |

QECC | Quantum Error-Correcting Code |

QRF | Quantum Reference Frame |

## Appendix A. The Basics of Channel Theory Information Flow and Context Dependency

**Definition**

**A1.**

**Definition**

**A2.**

#### Appendix A.1. Example: Observables in Context

- (i)
- A a set of “events” (in the general sense of the term, e.g., as observed value combinations or atomic), as related to
- (ii)
- a set B of conditions specifying “objects/contents” or “influences,” and
- (iii)
- a set R of contexts (or, in certain instances, a set of “detectors”, “measurements” or “methods”).

**K**$=\{-1,1\}$. Notably, in [33], ‘${\models}_{\mathcal{A}}$’ can be realized for an inferential process by the conditional probability $p\left(a\right|x)=p(a\left|\right\{b,c\left\}\right)$, whenever defined, for $a\in A,b\in B$ and $c\in R$, and which for suitable indexing, leads to an information flow of hierarchical Bayesian inference within a CCD [33]. The background to the results in Section 5 here can be found in ([33], Section 7). In particular, ([33], Th. 7.1) states the criteria for intrinsic contextuality (non-co-deployable observables) in terms of noncommutativity of a CCD. Note that the above classifier (Chu space) formulism of contextuality is very general. Special cases of the set $X=B\times R$ are the sets of binary random variables labelled by a measurement (contents-context) system as basic to the theory of Contextuality-by-Default [78,79]. Much amounts to the question of determining the nature of an empirical model e relative to how a probability distribution can be obtained as the marginals of a global probability distribution on the outcomes to all measurements. For example, e is said to be contextual in [80] if the corresponding probability distribution cannot be obtained by such global means. This has a compatible interpretation in terms of the non-existence of a global section of a sheaf defined relative to a “measurement cover” in [81]. These methods of studying contextuality are also very general, and as for those of [33], can extend beyond quantum theory to such disciplines as linguistics and psychology. To see the explicit connections between these various approaches would indeed be a worthwhile undertaking.

## References

- Bousso, R. The holographic principle. Rev. Mod. Phys.
**2002**, 74, 825–874. [Google Scholar] [CrossRef] [Green Version] - Hooft, G. Dimensional reduction in quantum gravity. In Salamfestschrift; Ali, A., Ellis, J., Randjbar-Daemi, S., Eds.; World Scientific: Singapore, 1993; pp. 284–296. [Google Scholar]
- Susskind, L. The world as a hologram. J. Math. Phys.
**1995**, 36, 6377–6396. [Google Scholar] [CrossRef] [Green Version] - Bekenstein, J.D. Black holes and information theory. Contemp. Phys.
**2004**, 45, 31–43. [Google Scholar] [CrossRef] [Green Version] - Fields, C.; Marcianò, A. Holographic screens are classical information channels. Quant. Rep.
**2020**, 2, 326–336. [Google Scholar] [CrossRef] - Fields, C.; Glazebrook, J.F. Representing measurement as a thermodynamic symmetry breaking. Symmetry
**2020**, 12, 810. [Google Scholar] [CrossRef] - Bartlett, S.D.; Rudolph, T.; Spekkens, R.W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys.
**2007**, 79, 555–609. [Google Scholar] [CrossRef] [Green Version] - Fields, C.; Marcianò, A. Sharing nonfungible information requires shared nonfungible information. Quant. Rep.
**2019**, 1, 252–259. [Google Scholar] [CrossRef] [Green Version] - Fuchs, C.A.; Schack, R. Quantum-bayesian coherence. Rev. Mod. Phys.
**2013**, 85, 1693–1715. [Google Scholar] [CrossRef] [Green Version] - Fields, C. Some consequences of the thermodynamic cost of system identification. Entropy
**2018**, 20, 797. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Susskind, L. Entanglement is not enough. arXiv
**2014**, arXiv:1411.0690. [Google Scholar] [CrossRef] [Green Version] - Rovelli, C. Black holes have more states than those giving the Bekenstein-Hawking entropy: A simple argument. arXiv
**2017**, arXiv:1710:00218. [Google Scholar] - Rovelli, C. The subtle unphysical hypothesis of the firewall theorem. Entropy
**2019**, 21, 839. [Google Scholar] [CrossRef] [Green Version] - Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. The entropy of Hawking radiation. arXiv
**2000**, arXiv:2006.06872v1. [Google Scholar] - Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black Holes: Complementarity or firewalls? J. High Energy Phys.
**2013**, 2013, 62. [Google Scholar] [CrossRef] [Green Version] - Tipler, F.J. Quantum nonlocality does not exist. Proc. Natl. Acad. Sci. USA
**2014**, 111, 11281–11286. [Google Scholar] [CrossRef] [Green Version] - Hooft, G.T. Deterministic quantum mechanics: The mathematical equations. Front. Phys.
**2020**, 8, 253. [Google Scholar] [CrossRef] - Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.
**2003**, 75, 715–775. [Google Scholar] [CrossRef] [Green Version] - Schlosshauer, M. Decoherence and the Quantum-To-Classical Transition; Springer: Berlin, Germany, 2007. [Google Scholar]
- Schlosshauer, M. Quantum decoherence. Phys. Rep.
**2019**, 831. [Google Scholar] [CrossRef] [Green Version] - Landsman, N.P. Observation and superselection in quantum mechanics. Stud. Hist. Philos. Mod. Phys.
**1995**, 26, 45–73. [Google Scholar] [CrossRef] [Green Version] - Zurek, W.H. Decoherence, einselection and the existential interpretation (the rough guide). Philos. Trans. R. Soc. A
**1998**, 356, 1793–1821. [Google Scholar] [CrossRef] [Green Version] - Chiribella, G.; D’Ariano, G.M.; Perinotti, P. Quantum Theory: Informational Foundations and Foils; Chiribella, G.G., Spekkens, R.W., Eds.; Springer: Dordrecht, The Netherland, 2016; pp. 171–221. [Google Scholar]
- Dugić, M.; Jeknixcx, J. What is “system”: Some decoherence-theory arguments. Int. J. Theor. Phys.
**2006**, 45, 2215–2225. [Google Scholar] [CrossRef] [Green Version] - Dugić, M.; Jeknixcx, J. What is “system”: The information-theoretic arguments. Int. J. Theor. Phys.
**2008**, 47, 805–813. [Google Scholar] [CrossRef] [Green Version] - Fields, C. Quantum Darwinism requires an extra-theoretical assumption of encoding redundancy. Int. J. Theor. Phys.
**2010**, 49, 2523–2527. [Google Scholar] [CrossRef] [Green Version] - Kastner, R.E. ‘Einselection’ of pointer observables: The new H-theorem? Stud. Hist. Philos. Mod. Phys.
**2014**, 48, 56–58. [Google Scholar] [CrossRef] [Green Version] - Barwise, J.; Seligman, J. Information Flow: The Logic of Distributed Systems; Cambridge Tracts in Theoretical Computer Science, 44; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Adámek, J.; Herrlich, H.; Strecker, G.E. Abstract and Concrete Categories: The Joy of Cats; Wiley: New York, NY, USA, 2004; Available online: http://katmat.math.uni-bremen.de/acc (accessed on 26 May 2019).
- Awodey, S. Category Theory. In Oxford Logic Guides, 62; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Goguen, J.A. A categorical manifesto. Math. Struct. Comput. Sci.
**1991**, 1, 49–67. [Google Scholar] [CrossRef] [Green Version] - Fields, C.; Glazebrook, J.F. A mosaic of Chu spaces and Channel Theory I: Category-theoretic concepts and tools. J. Exp. Theor. Artif. Intell.
**2019**, 31, 177–213. [Google Scholar] [CrossRef] - Fields, C.; Glazebrook, J.F. Information flow in context-dependent hierarchical Bayesian inference. J. Expt. Theor. Artif. Intell.
**2020**, in press. [Google Scholar] [CrossRef] - Chitambar, E.; Leung, D.; Mančinska, L.; Ozols, M.; Winter, A. Everything you always wanted to know about LOCC (but were afraid to ask). Comms. Math. Phys.
**2014**, 328, 303–326. [Google Scholar] [CrossRef] [Green Version] - Weinstein, A. Groupoids: Unifying internal and external symmetry. Not. AMS
**1996**, 43, 744–752. [Google Scholar] - Brown, R. Topology and Groupoids; Ronald Brown: Deganwy, UK, 2006; Available online: www.groupoids.org.uk (accessed on 1 February 2021).
- Zanardi, P. Virtual quantum subsystems. Phys. Rev. Lett.
**2001**, 87, 077901. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zanardi, P.; Lidar, D.A.; Lloyd, S. Quantum tensor product structures are observable-induced. Phys. Rev. Lett.
**2004**, 92, 060402. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Smith, J.E.; Nair, R. The architecture of virtual machines. IEEE Comput.
**2005**, 38, 32–38. [Google Scholar] [CrossRef] [Green Version] - Susskind, L.; Thorlacius, L.; Uglum, J. The stretched horizon and black hole complementarity. Phys. Rev. D
**1993**, 48, 3743–3761. [Google Scholar] [CrossRef] [Green Version] - Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortschritte Der Phys.
**2013**, 61, 781–811. [Google Scholar] [CrossRef] [Green Version] - Maldecana, J.; Pimental, G.L. Entanglement entropy in de Sitter space. J. High Energy Phys.
**2013**, 2013, 38. [Google Scholar] [CrossRef] [Green Version] - Choudhury, S.; Panda, S.; Singh, R. Bell violation in the sky. Eur. Phys. J. C
**2017**, 77, 60. [Google Scholar] [CrossRef] - Kanno, S.; Soda, J. Infinite violation of Bell inequalities in inflation. Phys. Rev. D
**2017**, 96, 083501. [Google Scholar] [CrossRef] [Green Version] - Rangamani, M.; Takayanagi, T. Holographic entanglement entropy. In Holographic Entanglement Entropy; Lecture Notes in Physics; Springer: Cham, Switzerland, 2017; Volume 931, pp. 35–47. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge Univeraity Press: Cambridge, UK, 2000. [Google Scholar]
- Vazirani, U.; Vidick, T. Fully device-independent quantum key distribution. Phys. Rev. Lett.
**2014**, 113, 140501. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Situ, H.; Qiu, D.W. Investigating the implementation of restricted sets of multiqubit operations on distant qubits: A communication complexity perspective. Quant. Inform. Process.
**2011**, 10, 609–618. [Google Scholar] [CrossRef] [Green Version] - Zou, X.; Qiu, D.W. Three-step semiquantum secure direct communication protocol. Sci. China G
**2014**, 57, 1696–1702. [Google Scholar] [CrossRef] - Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev.
**1961**, 5, 183–195. [Google Scholar] [CrossRef] - Bennett, C.H. The thermodynamics of computation. Int. J. Theor. Phys.
**1982**, 21, 905–940. [Google Scholar] [CrossRef] - Bohr, N. The quantum postulate and the recent development of atomic theory. Nature
**1928**, 121, 580–590. [Google Scholar] [CrossRef] [Green Version] - Verlinde, E.; Verlinde, H. Black hole entanglement and quantum error correction. J. High Energy Phys.
**2013**, 107. [Google Scholar] [CrossRef] [Green Version] - Wigner, E.P. Remarks on the mind-body question. In The Scientist Speculates; Good, I.J., Ed.; Heinemann: London, UK, 1961; pp. 284–302. [Google Scholar]
- Brukner, C. A no-go theorem for observer-independent facts. Entropy
**2018**, 20, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bong, K.-W.; Utreras-Alarcón, A.; Ghafari, F.; Liang, Y.-C.; Tischler, N.; Cavalcanti, E.G.; Pryde, G.J.; Wiseman, H.M. A strong no-go theorem on the Wigner’s friend paradox. Nat. Phys.
**2020**. [Google Scholar] [CrossRef] - Mermin, D. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys.
**1993**, 65, 803–815. [Google Scholar] [CrossRef] - Rice, H.G. Classes of recursively enumerable sets and their decision problems. Trans. Am. Math. Soc.
**1953**, 74, 358–366. [Google Scholar] [CrossRef] - McCarthy, J.; Hayes, P.J. Some philosophical problems from the standpoint of artificial intelligence. In Machine Intelligence; Michie, D., Meltzer, B., Eds.; Edinburgh University Press: Edinburgh, UK, 1969; Volume 4, pp. 463–502. [Google Scholar]
- Dietrich, E.; Fields, C. Equivalence of the Frame and Halting problems. Algorithms
**2020**, 13, 175. [Google Scholar] [CrossRef] - Addazi, A.; Chen, P.; Fabrocini, F.; Fields, C.; Greco, E.; Lutti, M.; Marcianò, A.; Pasechnik, R. Generalized holographic principle, gauge invariance and the emergence of gravity à la Wilczek. Front. Astron. Space Sci. in press. Available online: https://www.frontiersin.org/articles/10.3389/fspas.2021.563450/abstract (accessed on 1 February 2021).
- Wheeler, J.A. Law without law. In Quantum Theory and Measurement; Wheeler, J.A., Zurek, W.H., Eds.; Princeton University Press: Princeton, NJ, USA, 1983; pp. 182–213. [Google Scholar]
- Mermin, N.D. Making better sense of quantum mechanics. Rep. Prog. Phys.
**2018**, 82, 12002. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Muller, M.P. Law without law: From observer states to physics via algorithmic information theory. Quantum
**2020**, 4, 301. [Google Scholar] [CrossRef] - Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energy Phys.
**2011**, 2011, 29. [Google Scholar] [CrossRef] [Green Version] - Ng, Y.J. Entropy and gravitation. From black hole computers to dark energy and dark matter. Entropy
**2019**, 21, 1035. [Google Scholar] [CrossRef] [Green Version] - Barr, M. *-Autonomous Categories, with an Appendix by Po Hsiang Chu; Lecture Notes in Mathematics 752; Springer: Berlin, Germany, 1979. [Google Scholar]
- Pratt, V. Chu spaces. In School on Category Theory and Applications (Coimbra 1999); Volume 21 of Textos Mat. Sér. B; University of Coimbra: Coimbra, Portugal, 1999; pp. 39–100. [Google Scholar]
- Pratt, V. Chu spaces from the representational viewpoint. Ann. Pure Appl. Log.
**1999**, 96, 319–333. [Google Scholar] [CrossRef] [Green Version] - Collier, J. Information, causation and computation. In Information and Computation: Essays on Scientific and Philosophical Foundations of Information and Computation; World Scientific Series in Information Studies; Crnkovic, G.D., Burgin, M., Eds.; World Scientific Press: Hackensack, NJ, USA, 2011; Volume 2, pp. 89–105. [Google Scholar]
- Sorkin, R.D. Finitary substitute for continuous topology. Int. J. Theoret. Phys.
**1991**, 30, 923–947. [Google Scholar] [CrossRef] - Sorkin, R.D. Spacetime and causal sets. In Relativity and Gravitation: Classical and Quantum; D’Olivo, J.C., Nahmad-Achar, E., Rosenbaum, M., Ryan, M.P., Jr., Urrutla, L.F., Zertuche, F., Eds.; World Scientific: Singapore, 1991; pp. 150–173. [Google Scholar]
- Gratus, J.; Porter, T. A spatial view of information. Theor. Comp. Sci.
**2006**, 365, 206–215. [Google Scholar] [CrossRef] - Allwein, G.; Moskowitz, I.S.; Chang, L.-W. A New Framework for Shannon Information Theory; Technical Report A801024; Naval Research Laboratory: Washington, DC, USA, 2004; 17p. [Google Scholar]
- Barwise, J. Information and Impossibilities. Notre Dame J. Form. Log.
**1997**, 38, 488–515. [Google Scholar] [CrossRef] - Friston, K.J.; Kiebel, S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc.
**2009**, 364, 1211–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Adams, E.W. A Primer of Probabilistic Logic; University of Chicago Press: Chicago, IL, USA, 1998. [Google Scholar]
- Dzhafarov, E.N.; Kujala, J.V.; Cervantes, V.H. Contextuality-by-default: A brief overview of concepts and terminology. In Lecture Notes in Computer Science 9525; Atmanspacher, H., Filik, T., Pothos, E., Eds.; Springer: Heidelberg, Germany, 2016; pp. 12–23. [Google Scholar]
- Dzharfarov, E.N.; Kon, M. On universality of classical probability with contextually labeled random variables. J. Math. Psychol.
**2018**, 85, 17–24. [Google Scholar] [CrossRef] [Green Version] - Abramsky, S.; Barbosa, R.S.; Mansfield, S. Contextual fraction as a measure of contextuality. Phys. Rev. Lett.
**2017**, 119, 050504. [Google Scholar] [CrossRef] [Green Version] - Abramsky, S.; Brandenburger, A. The sheaf-theoretic structure of non-locality and contextuality. New J. Phys.
**2011**, 13, 113036. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) A gauge boson transfers asymptotically-classical momentum information across a holographic screen $\mathcal{B}$. (

**b**) The scattering process transfers no information about the entanglement entropy $\mathcal{S}\left(B\right)$.

**Figure 2.**(

**a**) Hawking pair annihilation-production near a BH is asymptotically indistinguishable from (

**b**) symmetric scattering from the stretched horizon.

**Figure 3.**A cocone diagram (CCD) is a commuting diagram depicting maps (infomorphisms) ${f}_{ij}$ between (eigen-)classifiers ${\mathcal{A}}_{i}$ and ${\mathcal{A}}_{j}$, maps ${g}_{kl}$ from the ${\mathcal{A}}_{k}$ to one or more channels ${\mathcal{C}}_{l}$ over subsets of the ${\mathcal{A}}_{i}$, and maps ${h}_{l}$ from channels ${\mathcal{C}}_{l}$ to the colimit $\mathbf{C}$ (cf. Equation (6.7) of [32]). Such a CCD can be associated (double-headed arrows) with any subset of binary operators ${M}_{k}^{A}\dots {M}_{n}^{A}$ provided that these operators all mutually commute. The CCD specifies, in this case, a classical algorithm implemented by ${H}_{A}$. The complete set of operators ${M}_{i}^{A}$ and ${M}_{i}^{B}$ in (2) together with the array of mutually noninteracting qubits ${q}_{1}\dots {q}_{N}$ (i.e., the screen $\mathcal{B}$) implement the classical channel between A and B. Free choice of QRFs by A and B corresponds to independent, free choice of z axis by A and B at each qubit. Note that should the CCD fail to commute (in which case the colimit becomes undefined), then the ${\mathcal{A}}_{i}$ are considered as “non-co-deployable” (observables), and their corresponding distributed system exhibits intrinsic contextuality ([33], Section 7).

**Figure 4.**A cocone diagram (CCD) computing an effective (or virtual) “system state” ${\rho}^{S}$ comprises classifier channels computing an effective pointer state ${\rho}^{{P}_{i}}$ and an effective reference state ${\rho}^{R}$ (cf. [6]). These channels define the effective “subsystems” R and ${P}_{i}$ comprising S. The CCD acts on the pure physical state ${|B\rangle}^{A}$ encoded by ${H}_{AB}$ on the holographic screen $\mathcal{B}$ (blue) separating A from B. The computation represented by the CCD is implemented by the internal dynamics ${H}_{A}$.

**Figure 5.**A sequence of CCDs identifying R (blue triangles) and measuring pointer components ${P}_{i},{P}_{j},{P}_{k}\dots {P}_{l}$. Transitions between CCDs are implemented by groupoid elements, e.g., ${\mathcal{G}}_{ij}$ and labeled by discrete macroscopic times ${\tau}_{i}$. The operators ${M}_{i}^{P}$ can equally well be generalized to subsets ${\{{M}^{P}\}}_{i}$ of mutually-commuting pointer-state observables.

**Figure 6.**Identifying a local quantum of radiation as a Hawking quantum ${r}_{H}$ from a distant BH requires a local Hawking QRF ${R}_{H}$. Lemma 3 rules this out.

**Figure 7.**A typical Bell protocol described in the lab frame. Sharing of measurements results via a classical channel is required to observe a Bell-inequality violation. If Alice’s interaction with Bob’s message is viewed as an ordinary quantum measurement, the entanglement disappears as in Section 3.4 above.

**Figure 8.**(

**a**) A Bell protocol in the frame of the entangled state (yellow circle). Alice and Bob collide at ${t}_{meas}$, at which time they share, and together measure, the entangled state. (

**b**) This is equivalent to Alice and Bob sharing an entangled QRF that reports consistent pointer outcomes to each observer.

**Figure 9.**A CD ${W}_{jj}$ (green triangle) specifies a memory-write operation of the time-stamped state $({\rho}^{R{P}_{j}},{\tau}_{j})$ to $\mathcal{B}$. The timestamp ${\tau}_{j}$ is generated by the groupoid action ${\mathcal{G}}_{ij}$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fields, C.; Glazebrook, J.F.; Marcianò, A.
Reference Frame Induced Symmetry Breaking on Holographic Screens. *Symmetry* **2021**, *13*, 408.
https://doi.org/10.3390/sym13030408

**AMA Style**

Fields C, Glazebrook JF, Marcianò A.
Reference Frame Induced Symmetry Breaking on Holographic Screens. *Symmetry*. 2021; 13(3):408.
https://doi.org/10.3390/sym13030408

**Chicago/Turabian Style**

Fields, Chris, James F. Glazebrook, and Antonino Marcianò.
2021. "Reference Frame Induced Symmetry Breaking on Holographic Screens" *Symmetry* 13, no. 3: 408.
https://doi.org/10.3390/sym13030408