Reference Frame Induced Symmetry Breaking on Holographic Screens
Abstract
1. Introduction
GHP: If but only if a pair of finite quantum systems A and B have a separable joint state , there is a finite spacelike surface , with area , N the dimension of and the Planck length, that implements as a classical channel.
2. Instantaneous Interactions across
2.1. Example: Scattering
2.2. Example: Hawking Radiation
2.3. Symmetry across Corresponds to “Free Choice” of QRFs
3. Reference Frame Induced Decoherence
3.1. QRFs for System Identification
3.2. Reference and Pointer Measurements
3.3. Sequential Pointer Measurements Induce Decoherence
[T]he formulation of the measurement problem and its resolution through the appeal to decoherence require a universe split into systems. Yet, it is far from clear how one can define systems given an overall Hilbert space ‘of everything’ and the total Hamiltonian.
3.4. Example: Mass and Hawking Radiation QRFs for a BH
3.5. Computation and Memory Costs Induce Coarse-Graining
4. Reference Frame Induced Entanglement
5. Reference Frame Induced Contextuality
6. Writing and Reading Classical Memories
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BH | Black Hole |
CCD | Cocone Diagram |
CD | Cone Diagram |
EPR | Einstein-Podolsky-Rosen |
ER | Einstein-Rosen |
GHP | Generalized Holographic Principle |
LOCC | Local Operations, Classical Communication |
QECC | Quantum Error-Correcting Code |
QRF | Quantum Reference Frame |
Appendix A. The Basics of Channel Theory Information Flow and Context Dependency
Appendix A.1. Example: Observables in Context
- (i)
- A a set of “events” (in the general sense of the term, e.g., as observed value combinations or atomic), as related to
- (ii)
- a set B of conditions specifying “objects/contents” or “influences,” and
- (iii)
- a set R of contexts (or, in certain instances, a set of “detectors”, “measurements” or “methods”).
References
- Bousso, R. The holographic principle. Rev. Mod. Phys. 2002, 74, 825–874. [Google Scholar] [CrossRef]
- Hooft, G. Dimensional reduction in quantum gravity. In Salamfestschrift; Ali, A., Ellis, J., Randjbar-Daemi, S., Eds.; World Scientific: Singapore, 1993; pp. 284–296. [Google Scholar]
- Susskind, L. The world as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and information theory. Contemp. Phys. 2004, 45, 31–43. [Google Scholar] [CrossRef]
- Fields, C.; Marcianò, A. Holographic screens are classical information channels. Quant. Rep. 2020, 2, 326–336. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F. Representing measurement as a thermodynamic symmetry breaking. Symmetry 2020, 12, 810. [Google Scholar] [CrossRef]
- Bartlett, S.D.; Rudolph, T.; Spekkens, R.W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 2007, 79, 555–609. [Google Scholar] [CrossRef]
- Fields, C.; Marcianò, A. Sharing nonfungible information requires shared nonfungible information. Quant. Rep. 2019, 1, 252–259. [Google Scholar] [CrossRef]
- Fuchs, C.A.; Schack, R. Quantum-bayesian coherence. Rev. Mod. Phys. 2013, 85, 1693–1715. [Google Scholar] [CrossRef]
- Fields, C. Some consequences of the thermodynamic cost of system identification. Entropy 2018, 20, 797. [Google Scholar] [CrossRef] [PubMed]
- Susskind, L. Entanglement is not enough. arXiv 2014, arXiv:1411.0690. [Google Scholar] [CrossRef]
- Rovelli, C. Black holes have more states than those giving the Bekenstein-Hawking entropy: A simple argument. arXiv 2017, arXiv:1710:00218. [Google Scholar]
- Rovelli, C. The subtle unphysical hypothesis of the firewall theorem. Entropy 2019, 21, 839. [Google Scholar] [CrossRef]
- Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. The entropy of Hawking radiation. arXiv 2000, arXiv:2006.06872v1. [Google Scholar]
- Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black Holes: Complementarity or firewalls? J. High Energy Phys. 2013, 2013, 62. [Google Scholar] [CrossRef]
- Tipler, F.J. Quantum nonlocality does not exist. Proc. Natl. Acad. Sci. USA 2014, 111, 11281–11286. [Google Scholar] [CrossRef]
- Hooft, G.T. Deterministic quantum mechanics: The mathematical equations. Front. Phys. 2020, 8, 253. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 2003, 75, 715–775. [Google Scholar] [CrossRef]
- Schlosshauer, M. Decoherence and the Quantum-To-Classical Transition; Springer: Berlin, Germany, 2007. [Google Scholar]
- Schlosshauer, M. Quantum decoherence. Phys. Rep. 2019, 831. [Google Scholar] [CrossRef]
- Landsman, N.P. Observation and superselection in quantum mechanics. Stud. Hist. Philos. Mod. Phys. 1995, 26, 45–73. [Google Scholar] [CrossRef]
- Zurek, W.H. Decoherence, einselection and the existential interpretation (the rough guide). Philos. Trans. R. Soc. A 1998, 356, 1793–1821. [Google Scholar] [CrossRef]
- Chiribella, G.; D’Ariano, G.M.; Perinotti, P. Quantum Theory: Informational Foundations and Foils; Chiribella, G.G., Spekkens, R.W., Eds.; Springer: Dordrecht, The Netherland, 2016; pp. 171–221. [Google Scholar]
- Dugić, M.; Jeknixcx, J. What is “system”: Some decoherence-theory arguments. Int. J. Theor. Phys. 2006, 45, 2215–2225. [Google Scholar] [CrossRef]
- Dugić, M.; Jeknixcx, J. What is “system”: The information-theoretic arguments. Int. J. Theor. Phys. 2008, 47, 805–813. [Google Scholar] [CrossRef]
- Fields, C. Quantum Darwinism requires an extra-theoretical assumption of encoding redundancy. Int. J. Theor. Phys. 2010, 49, 2523–2527. [Google Scholar] [CrossRef]
- Kastner, R.E. ‘Einselection’ of pointer observables: The new H-theorem? Stud. Hist. Philos. Mod. Phys. 2014, 48, 56–58. [Google Scholar] [CrossRef]
- Barwise, J.; Seligman, J. Information Flow: The Logic of Distributed Systems; Cambridge Tracts in Theoretical Computer Science, 44; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Adámek, J.; Herrlich, H.; Strecker, G.E. Abstract and Concrete Categories: The Joy of Cats; Wiley: New York, NY, USA, 2004; Available online: http://katmat.math.uni-bremen.de/acc (accessed on 26 May 2019).
- Awodey, S. Category Theory. In Oxford Logic Guides, 62; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Goguen, J.A. A categorical manifesto. Math. Struct. Comput. Sci. 1991, 1, 49–67. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F. A mosaic of Chu spaces and Channel Theory I: Category-theoretic concepts and tools. J. Exp. Theor. Artif. Intell. 2019, 31, 177–213. [Google Scholar] [CrossRef]
- Fields, C.; Glazebrook, J.F. Information flow in context-dependent hierarchical Bayesian inference. J. Expt. Theor. Artif. Intell. 2020, in press. [Google Scholar] [CrossRef]
- Chitambar, E.; Leung, D.; Mančinska, L.; Ozols, M.; Winter, A. Everything you always wanted to know about LOCC (but were afraid to ask). Comms. Math. Phys. 2014, 328, 303–326. [Google Scholar] [CrossRef]
- Weinstein, A. Groupoids: Unifying internal and external symmetry. Not. AMS 1996, 43, 744–752. [Google Scholar]
- Brown, R. Topology and Groupoids; Ronald Brown: Deganwy, UK, 2006; Available online: www.groupoids.org.uk (accessed on 1 February 2021).
- Zanardi, P. Virtual quantum subsystems. Phys. Rev. Lett. 2001, 87, 077901. [Google Scholar] [CrossRef] [PubMed]
- Zanardi, P.; Lidar, D.A.; Lloyd, S. Quantum tensor product structures are observable-induced. Phys. Rev. Lett. 2004, 92, 060402. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.; Nair, R. The architecture of virtual machines. IEEE Comput. 2005, 38, 32–38. [Google Scholar] [CrossRef]
- Susskind, L.; Thorlacius, L.; Uglum, J. The stretched horizon and black hole complementarity. Phys. Rev. D 1993, 48, 3743–3761. [Google Scholar] [CrossRef]
- Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortschritte Der Phys. 2013, 61, 781–811. [Google Scholar] [CrossRef]
- Maldecana, J.; Pimental, G.L. Entanglement entropy in de Sitter space. J. High Energy Phys. 2013, 2013, 38. [Google Scholar] [CrossRef]
- Choudhury, S.; Panda, S.; Singh, R. Bell violation in the sky. Eur. Phys. J. C 2017, 77, 60. [Google Scholar] [CrossRef]
- Kanno, S.; Soda, J. Infinite violation of Bell inequalities in inflation. Phys. Rev. D 2017, 96, 083501. [Google Scholar] [CrossRef]
- Rangamani, M.; Takayanagi, T. Holographic entanglement entropy. In Holographic Entanglement Entropy; Lecture Notes in Physics; Springer: Cham, Switzerland, 2017; Volume 931, pp. 35–47. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge Univeraity Press: Cambridge, UK, 2000. [Google Scholar]
- Vazirani, U.; Vidick, T. Fully device-independent quantum key distribution. Phys. Rev. Lett. 2014, 113, 140501. [Google Scholar] [CrossRef] [PubMed]
- Situ, H.; Qiu, D.W. Investigating the implementation of restricted sets of multiqubit operations on distant qubits: A communication complexity perspective. Quant. Inform. Process. 2011, 10, 609–618. [Google Scholar] [CrossRef]
- Zou, X.; Qiu, D.W. Three-step semiquantum secure direct communication protocol. Sci. China G 2014, 57, 1696–1702. [Google Scholar] [CrossRef]
- Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 1961, 5, 183–195. [Google Scholar] [CrossRef]
- Bennett, C.H. The thermodynamics of computation. Int. J. Theor. Phys. 1982, 21, 905–940. [Google Scholar] [CrossRef]
- Bohr, N. The quantum postulate and the recent development of atomic theory. Nature 1928, 121, 580–590. [Google Scholar] [CrossRef]
- Verlinde, E.; Verlinde, H. Black hole entanglement and quantum error correction. J. High Energy Phys. 2013, 107. [Google Scholar] [CrossRef]
- Wigner, E.P. Remarks on the mind-body question. In The Scientist Speculates; Good, I.J., Ed.; Heinemann: London, UK, 1961; pp. 284–302. [Google Scholar]
- Brukner, C. A no-go theorem for observer-independent facts. Entropy 2018, 20, 350. [Google Scholar] [CrossRef] [PubMed]
- Bong, K.-W.; Utreras-Alarcón, A.; Ghafari, F.; Liang, Y.-C.; Tischler, N.; Cavalcanti, E.G.; Pryde, G.J.; Wiseman, H.M. A strong no-go theorem on the Wigner’s friend paradox. Nat. Phys. 2020. [Google Scholar] [CrossRef]
- Mermin, D. Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 1993, 65, 803–815. [Google Scholar] [CrossRef]
- Rice, H.G. Classes of recursively enumerable sets and their decision problems. Trans. Am. Math. Soc. 1953, 74, 358–366. [Google Scholar] [CrossRef]
- McCarthy, J.; Hayes, P.J. Some philosophical problems from the standpoint of artificial intelligence. In Machine Intelligence; Michie, D., Meltzer, B., Eds.; Edinburgh University Press: Edinburgh, UK, 1969; Volume 4, pp. 463–502. [Google Scholar]
- Dietrich, E.; Fields, C. Equivalence of the Frame and Halting problems. Algorithms 2020, 13, 175. [Google Scholar] [CrossRef]
- Addazi, A.; Chen, P.; Fabrocini, F.; Fields, C.; Greco, E.; Lutti, M.; Marcianò, A.; Pasechnik, R. Generalized holographic principle, gauge invariance and the emergence of gravity à la Wilczek. Front. Astron. Space Sci. in press. Available online: https://www.frontiersin.org/articles/10.3389/fspas.2021.563450/abstract (accessed on 1 February 2021).
- Wheeler, J.A. Law without law. In Quantum Theory and Measurement; Wheeler, J.A., Zurek, W.H., Eds.; Princeton University Press: Princeton, NJ, USA, 1983; pp. 182–213. [Google Scholar]
- Mermin, N.D. Making better sense of quantum mechanics. Rep. Prog. Phys. 2018, 82, 12002. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.P. Law without law: From observer states to physics via algorithmic information theory. Quantum 2020, 4, 301. [Google Scholar] [CrossRef]
- Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011, 2011, 29. [Google Scholar] [CrossRef]
- Ng, Y.J. Entropy and gravitation. From black hole computers to dark energy and dark matter. Entropy 2019, 21, 1035. [Google Scholar] [CrossRef]
- Barr, M. *-Autonomous Categories, with an Appendix by Po Hsiang Chu; Lecture Notes in Mathematics 752; Springer: Berlin, Germany, 1979. [Google Scholar]
- Pratt, V. Chu spaces. In School on Category Theory and Applications (Coimbra 1999); Volume 21 of Textos Mat. Sér. B; University of Coimbra: Coimbra, Portugal, 1999; pp. 39–100. [Google Scholar]
- Pratt, V. Chu spaces from the representational viewpoint. Ann. Pure Appl. Log. 1999, 96, 319–333. [Google Scholar] [CrossRef]
- Collier, J. Information, causation and computation. In Information and Computation: Essays on Scientific and Philosophical Foundations of Information and Computation; World Scientific Series in Information Studies; Crnkovic, G.D., Burgin, M., Eds.; World Scientific Press: Hackensack, NJ, USA, 2011; Volume 2, pp. 89–105. [Google Scholar]
- Sorkin, R.D. Finitary substitute for continuous topology. Int. J. Theoret. Phys. 1991, 30, 923–947. [Google Scholar] [CrossRef]
- Sorkin, R.D. Spacetime and causal sets. In Relativity and Gravitation: Classical and Quantum; D’Olivo, J.C., Nahmad-Achar, E., Rosenbaum, M., Ryan, M.P., Jr., Urrutla, L.F., Zertuche, F., Eds.; World Scientific: Singapore, 1991; pp. 150–173. [Google Scholar]
- Gratus, J.; Porter, T. A spatial view of information. Theor. Comp. Sci. 2006, 365, 206–215. [Google Scholar] [CrossRef]
- Allwein, G.; Moskowitz, I.S.; Chang, L.-W. A New Framework for Shannon Information Theory; Technical Report A801024; Naval Research Laboratory: Washington, DC, USA, 2004; 17p. [Google Scholar]
- Barwise, J. Information and Impossibilities. Notre Dame J. Form. Log. 1997, 38, 488–515. [Google Scholar] [CrossRef]
- Friston, K.J.; Kiebel, S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. 2009, 364, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.W. A Primer of Probabilistic Logic; University of Chicago Press: Chicago, IL, USA, 1998. [Google Scholar]
- Dzhafarov, E.N.; Kujala, J.V.; Cervantes, V.H. Contextuality-by-default: A brief overview of concepts and terminology. In Lecture Notes in Computer Science 9525; Atmanspacher, H., Filik, T., Pothos, E., Eds.; Springer: Heidelberg, Germany, 2016; pp. 12–23. [Google Scholar]
- Dzharfarov, E.N.; Kon, M. On universality of classical probability with contextually labeled random variables. J. Math. Psychol. 2018, 85, 17–24. [Google Scholar] [CrossRef]
- Abramsky, S.; Barbosa, R.S.; Mansfield, S. Contextual fraction as a measure of contextuality. Phys. Rev. Lett. 2017, 119, 050504. [Google Scholar] [CrossRef]
- Abramsky, S.; Brandenburger, A. The sheaf-theoretic structure of non-locality and contextuality. New J. Phys. 2011, 13, 113036. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fields, C.; Glazebrook, J.F.; Marcianò, A. Reference Frame Induced Symmetry Breaking on Holographic Screens. Symmetry 2021, 13, 408. https://doi.org/10.3390/sym13030408
Fields C, Glazebrook JF, Marcianò A. Reference Frame Induced Symmetry Breaking on Holographic Screens. Symmetry. 2021; 13(3):408. https://doi.org/10.3390/sym13030408
Chicago/Turabian StyleFields, Chris, James F. Glazebrook, and Antonino Marcianò. 2021. "Reference Frame Induced Symmetry Breaking on Holographic Screens" Symmetry 13, no. 3: 408. https://doi.org/10.3390/sym13030408
APA StyleFields, C., Glazebrook, J. F., & Marcianò, A. (2021). Reference Frame Induced Symmetry Breaking on Holographic Screens. Symmetry, 13(3), 408. https://doi.org/10.3390/sym13030408