# Holographic Foam Cosmology: From the Late to the Early Universe

## Abstract

**:**

## 1. Introduction

## 2. Holographic Spacetime Foam

## 3. From Spacetime Foam to Dark Energy

## 4. From Spacetime Foam and Turbulence to Cosmic Inflation

## 5. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D
**1981**, 23, 347–356. [Google Scholar] [CrossRef] [Green Version] - Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B
**1980**, 91, 99–102. [Google Scholar] [CrossRef] - Kazanas, D. Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J.
**1980**, 241, L59–L63. [Google Scholar] [CrossRef] - Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B
**1982**, 108, 389–393. [Google Scholar] [CrossRef] - Albrecht, A.; Steinhardt, P.J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett.
**1982**, 48, 1220–1223. [Google Scholar] [CrossRef] - Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J.
**1999**, 517, 565–586. [Google Scholar] [CrossRef] - Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J.
**1998**, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version] - Benisty, D.; Guendelman, E.I. Lorentzian Quintessential Inflation. Int. J. Mod. Phys. D
**2020**, 29, 2042002. [Google Scholar] [CrossRef] - Garcia-Bellido, J.; Rubio, J.; Shaposhnikov, M.; Zenhausern, D. Higgs-Dilaton Cosmology: From the Early to the Late Universe. Phys. Rev. D
**2011**, 84, 123504. [Google Scholar] [CrossRef] [Green Version] - Wheeler, J.A. Relativity, Groups and Topology; DeWitt, B.S., DeWitt, C.M., Eds.; Gordon & Breach: New York, NY, USA, 1963; p. 315. [Google Scholar]
- Hawking, S.W.; Page, D.N.; Pope, C.N. Quantum Gravitational Bubbles. Nucl. Phys.
**1980**, 170, 283–306. [Google Scholar] [CrossRef] - Ashtekar, A.; Rovelli, C.; Smolin, L. Weaving a Classical Geometry with Quantum Threads. Phys. Rev. Lett.
**1992**, 69, 237–240. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Arzano, M.; Kephart, T.W.; Ng, Y.J. From Spacetime Foam to Holographic Foam Cosmology. Phys. Lett. B
**2007**, 649, 243. [Google Scholar] [CrossRef] [Green Version] - Maziashvili, M. Space-Time in Light of Karolyhazy Uncertainty Relation. Int. J. Mod. Phys. D
**2007**, 16, 1531–1539. [Google Scholar] [CrossRef] [Green Version] - Fischler, W.; Susskind, L. Holography and Cosmology. arXiv
**1998**, arXiv:hep-th/9806039. [Google Scholar] - Easther, R.; Lowe, D. Holography, Cosmology, and the Second Law of Thermodynamics. Phys. Rev. Lett.
**1999**, 82, 4967–4970. [Google Scholar] [CrossRef] [Green Version] - Salecker, H.; Wigner, E.P. Quantum Limitations of the Measurement of Space-Time Distances. Phys. Rev.
**1958**, 109, 571–577. [Google Scholar] [CrossRef] - Ng, Y.J.; van Dam, H. Limit to Spacetime Measurement. Mod. Phys. Lett. A
**1994**, 9, 335–340. [Google Scholar] - Ng, Y.J.; van Dam, H. Remarks on Gravitational Sources. Mod. Phys. Lett. A
**1995**, 10, 2801–2808. [Google Scholar] [CrossRef] - Karolyhazy, F. Gravitation and Quantum Mechanics of Macroscopic Objects. Il Nuovo Cimento A
**1966**, 42, 390–402. [Google Scholar] [CrossRef] - Sasakura, N. An Uncertainty Relation of Space-Time. Prog. Theor. Phys.
**1999**, 102, 169–179. [Google Scholar] [CrossRef] [Green Version] - Lloyd, S.; Ng, Y.J. Black Hole Computers. Sci. Am.
**2004**, 291, 52–61. [Google Scholar] [CrossRef] [PubMed] - Margolus, N.; Levitin, L.B. The Maximum Speed of Dynamical Evolution. Phys. D
**1998**, 120, 188–195. [Google Scholar] [CrossRef] [Green Version] - Hooft, G. Salamfestschrift; Ali, G.A., Ed.; World Scientific: Singapore, 1993; p. 284. [Google Scholar]
- Susskind, L. The World as a Hologram. J. Math. Phys.
**1995**, 36, 6377–6396. [Google Scholar] [CrossRef] [Green Version] - Maldacena, J. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys.
**1998**, 2, 231–252. [Google Scholar] [CrossRef] - Gambini, R.; Pullin, J. Holography in Spherically Symmetric Loop Quantum Gravity. Int. J. Mod. Phys. D
**2008**, 17, 545–549. [Google Scholar] [CrossRef] [Green Version] - Ng, Y.J. Holographic Foam, Dark Energy and Infinite Statistics. Phys. Lett. B
**2007**, 657, 10–14. [Google Scholar] [CrossRef] [Green Version] - Ratra, B.; Peebles, J. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D
**1988**, 37, 3406–3427. [Google Scholar] [CrossRef] - Caldwell, R.R.; Dave, R.; Steinhardt, P.J. Cosmological Imprint of an Energy Component with General Equation-of-State. Phys. Rev. Lett.
**1998**, 80, 1582. [Google Scholar] [CrossRef] [Green Version] - Ng, Y.J. Proceedings of the Fortieth Karpacz Winter School on Theoretical Physics; Kowalski-Glikman, J., Amelino-Camelia, G., Eds.; Springer: Berlin, Germany, 2005; p. 321. [Google Scholar]
- Doplicher, S.; Haag, R.; Roberts, J. Local Observables and Particle Statistics I. Commun. Math. Phys.
**1971**, 23, 199–230. [Google Scholar] [CrossRef] - Doplicher, S.; Haag, R.; Roberts, J. Local Observables and Particle Statistics II. Commun. Math. Phys.
**1974**, 35, 49–85. [Google Scholar] [CrossRef] - Greenberg, O.W. Example of Infinite Statistics. Phys. Rev. Lett.
**1990**, 64, 705–708. [Google Scholar] [CrossRef] - Jejjala, V.; Kavic, M.; Minic, D. Fine Structure of Dark Energy and New Physics. Adv. High Energy Phys.
**2007**, 2007, 21586. [Google Scholar] [CrossRef] [Green Version] - Fredenhagen, K. On the Existence of Antiparticles. Commun. Math. Phys.
**1981**, 79, 141–151. [Google Scholar] [CrossRef] - Hochberg, D.; Kephart, T.W. Wormhole Cosmology and the Horizon Problem. Phys. Rev. Lett.
**1993**, 70, 2665. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wheeler, J.A. Geons. Phys. Rev.
**1955**, 97, 511–536. [Google Scholar] [CrossRef] - Jejjala, V.; Minic, D.; Ng, Y.J.; Tze, C.H. Turbulence and holography. Class. Quant. Grav.
**2008**, 25, 225012. [Google Scholar] [CrossRef] - Jejjala, V.; Minic, D.; Ng, Y.J.; Tze, C.H. Quantum gravity and turbulence. Int. J. Mod. Phys. D
**2010**, 19, 2311–2317. [Google Scholar] [CrossRef] [Green Version] - Unruh, W. Dumb holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D
**1995**, 51, 2827–2838. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Akad. Nauk SSSR
**1941**, 30, 299–303. [Google Scholar] - Kolmogorov, A.N. Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR
**1941**, 32, 16–18. [Google Scholar] - Gibson, C.H. The First Turbulent Combustion. Combust. Sci. Tech.
**2005**, 177, 1. [Google Scholar] [CrossRef] - Krymsky, A.M.; Marochnik, L.S.; Naselsky, P.D.; Pelikhov, N.V. Turbulence in Cosmology III. The effect of non-linear interactions on the Universe expansion law, Quantum turbulence near singularity. Astrophys. Space Sci.
**1978**, 55, 325–350. [Google Scholar] [CrossRef] - Huang, K.; Low, H.B.; Tung, R.S. Scalar Field Cosmology II: Superfluidity, Quantum Turbulence, and Inflation. Int. J. Mod. Phys. A
**2012**, 27, 1250154. [Google Scholar] [CrossRef] [Green Version] - Penrose, R. Difficulties with Inflationary Cosmology. Ann. N. Y. Acad. Sci.
**1989**, 271, 249–264. [Google Scholar] [CrossRef] - Steinhardt, P.J. The inflation debate: Is the theory at the heart of modern cosmology deeply flawed? Sci. Am.
**2011**, 304, 36–43. [Google Scholar] [CrossRef] - Ho, C.M.; Minic, D.; Ng, Y.J. Dark matter, infinite statistics, and quantum gravity. Phys. Rev. D
**2012**, 85, 104033. [Google Scholar] [CrossRef] [Green Version] - Greenberg, O.W.; Delgado, J.D. Construction of bosons and fermions out of quons. Phys. Lett. A
**2001**, 288, 139. [Google Scholar] [CrossRef] [Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ng, Y.J.
Holographic Foam Cosmology: From the Late to the Early Universe. *Symmetry* **2021**, *13*, 435.
https://doi.org/10.3390/sym13030435

**AMA Style**

Ng YJ.
Holographic Foam Cosmology: From the Late to the Early Universe. *Symmetry*. 2021; 13(3):435.
https://doi.org/10.3390/sym13030435

**Chicago/Turabian Style**

Ng, Yee Jack.
2021. "Holographic Foam Cosmology: From the Late to the Early Universe" *Symmetry* 13, no. 3: 435.
https://doi.org/10.3390/sym13030435