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Abstract: Any interaction between finite quantum systems in a separable joint state can be viewed as
encoding classical information on an induced holographic screen. Here we show that when such
an interaction is represented as a measurement, the quantum reference frames (QRFs) deployed to
identify systems and pick out their pointer states induce decoherence, breaking the symmetry of
the holographic encoding in an observer-relative way. Observable entanglement, contextuality, and
classical memory are, in this representation, logical and temporal relations between QRFs. Sharing
entanglement as a resource requires a priori shared QRFs.

Keywords: black hole; contextuality; decoherence; quantum error-correcting code; quantum refer-
ence frame; system identification; channel theory

1. Introduction

The holographic principle (HP) states, in its covariant formulation, that for any finite
spacelike boundary B, open or closed, the classical, thermodynamic entropy S(L(B)) of
any light-sheet L(B) of B satisfies:

S(L(B)) ≤ A(B)/4 , (1)

where A(B) is the area of B in Planck units [1]. The HP was motivated by the Bekenstein
bound on the thermodynamic entropy of a black hole (BH), and has traditionally been in-
terpreted as a bound on the thermodynamic entropy of, and hence the classical information
encodable on, an independently-defined surface B, e.g., the stretched horizon of a BH [2,3];
see [1,4] for reviews.

We can, however, also view (1) from a more general perspective, as a fundamental
principle of information geometry that associates a (finite) minimal surface B with any bit
string of (finite) entropy S, and hence with any classical channel of width S bits. Such a
channel can be constructed, without loss of generality, as follows: Let U = AB be a finite,
closed quantum system, assume separability, |AB〉 = |A〉|B〉 over any time interval of
interest, and write the interaction:

HAB = βkkBTk
N

∑
i

αk
i Mk

i , (2)

where k = A or B, the Mk
i are N Hermitian operators with eigenvalues in {−1, 1}, the

αk
i ∈ [0, 1] are such that ∑N

i αk
i = 1, kB is Boltzmann’s constant, Tk is k’s temperature,
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and βk ≥ ln 2 is an inverse measure of k’s thermodynamic efficiency that depends on the
internal dynamics Hk. At each time step, A obtains exactly N bits of information about B
from this channel and vice versa, entirely independently of the internal dynamics HA and
HB. With this construction, we can state the following generalized holographic principle
(cf. [5] Thm. 1):

GHP: If but only if a pair of finite quantum systems A and B have a separable
joint state |AB〉 = |A〉|B〉, there is a finite spacelike surface B, with area A(B) ≥
A(B)min = 4ln2Nl2

P, N the dimension of HAB and lP the Planck length, that
implements HAB as a classical channel.

This GHP is a purely information-theoretic principle that makes no reference to any
spatial embedding of A or B. We show in [5] that it holds for any spatial embedding of
A and B allowed by special relativity. As B is ancillary to the interaction HAB, we will
be unconcerned with the spatial scale of B; in systems with low energy densities, we can
expect A(B)� A(B)min.

The form of the Hamiltonian (2) has two immediately-apparent symmetries. First, the
number N of transferred bits is fixed; hence Equation (2) is symmetric as a channel. The
holographic screen B “looks the same” and encodes the same information, N bits, from
either A’s or B’s perspective. Second, the terms αk

i Mk
i of Equation (2) can be re-arranged in

any order. If we view B as implemented by an ancillary array of non-interacting qubits as
in [5,6], these qubits can be permuted arbitrarily; hence the state of B is invariant under the
symmetric group SN .

Here we consider the system A to be an “observer” of B, and study apparent, observer-
relative symmetry breaking on B induced by the implementation of one or more quantum
reference frames (QRFs) by the internal Hamiltonian HA. The role of reference frames
in physical theory is to allow observations made at different times and/or places to be
compared. While in classical physics reference frames are often treated in abstracto,
in quantum theory they must be considered to be physically implemented, and hence as
QRFs; meter sticks, clocks, and gyroscopes are canonical examples [7]. Sharing an external
QRF, e.g., a Cartesian frame, across either space or time requires the observers involved to
implement an equivalent internal QRF [8]; hence all QRFs deployed by A can, without loss
of generality, be considered to be implemented by HA (cf. [9,10]).

We begin in Section 2 below by briefly reviewing some consequences of separating
systems A and B by a holographic screen B; such separation prevents, in particular,
measurements by A of the entanglement entropy of B. We then introduce in Section 3 an
explicit, fully general, and semantically-rich category-theoretic formalism with which to
specify the QRFs deployed by any observer, focussing first on QRFs employed for system
identification (Section 3.1) and then considering QRFs employed for pointer measurements
(Section 3.2). We show that sequential pointer measurements break the SN symmetry of
the screen B, inducing decoherence (Section 3.3). For illustration, we turn to the particular
case of measuring Hawking quanta from a BH, showing explicitly that no experiment
can demonstrate entanglement between a BH and a distant free quantum of radiation
(Section 3.4). We close this section by showing that the free-energy costs of deploying a
QRF induce coarse-graining (Section 3.5). These results provide the background required
to prove, in Section 4, that sharing entanglement as a resource requires a priori shared,
entangled QRFs, and then to prove, in Section 5, that whether two observers share QRFs is
finite Turing undecidable. We close in Section 6 by showing that writing classical memories
to a screen B creates phase correlations that further disrupt the SN symmetry of the screen.
These results together suggest that, far from being “an apparent law of physics that stands
by itself” [1], the HP in its generalized GHP form is central to quantum information theory.

2. Instantaneous Interactions across B
To write the Hamiltonian (2), we require the joint state |AB〉 to be separable; it is this

separability that makes B a classical channel. Distinguishing the classical entropy (S) from
the entanglement entropy (S),we can restate the GHP in summary form as:
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Lemma 1. If systems A and B are separated by a finite holographic screen B, the entanglement
entropy of the joint state S(|AB〉) = 0.

Proof. By the definition of B; see [5], Thm. 1 showing that any finite-bandwidth classical
communication channel can be represented as a finite holographic screen for details.

Lemma 1 immediately rules out transfers of quantum information across B; hence A
has access to neither the internal Hamiltonian HB or the entanglement entropy S(B) =de f
max(S(|B1B2〉)) over tensor-product decompositions B1B2 = B. It is clear, moreover, that
Equation (2) can hold only if the Hilbert space dimensions dim(HA), dim(HB) ≥ N, where
equality holds only if A and B contain no “hidden” degrees of freedom that do not, over any
time interval under consideration, contribute to HAB. Hence A cannot place upper limits
on either the dimension dim(HB) or the entanglement entropy S(B) of B. We will assume
in what follows that B is “large,” dim(HB) � N, and has near-maximal entanglement
entropy S(B) ≈ dim(HB)/2; this is effectively the assumption that HAB only minimally
perturbs |B〉. As with this assumption the full state |B〉 is not observable by A, we will use
the notation |B〉A to indicate the “observed” (by A) partial state of B that is encoded on B.
By (2), this observed state |B〉A is an eigenstate of HAB with dimension N.

2.1. Example: Scattering

Consider a scattering process mediated by a gauge boson, as shown in Figure 1a.
Both incoming and outgoing joint states are asymptotically separable, so the exchanged
information is encoded on a holographic screen B. Ignoring charge and spin, the encoded
information specifies a classical momentum transfer ∆~p. No quantum information is
transferred across B; in particular, the scattering processes transfers no information about
the entanglement entropy S(B) to A (Figure 1b).

Figure 1. (a) A gauge boson transfers asymptotically-classical momentum information across a holographic screen B.
(b) The scattering process transfers no information about the entanglement entropy S(B).

Writing the Hamiltonian as in (2) requires the dimension N of the observed state |B〉A
to be finite and hence the momentum transfer ∆~p to be discrete. Discrete values of ∆~p
reflect the discrete cost of information in units of h̄. In a experimental setting in which
∆~p is measured at some asymptotically-distant location, the dimension N, and hence the
number of (ancillary) qubits required to represent B as a channel, is set operationally
by the resolution of the detector. In this case ∆~p is the measured pointer value, and a
full description of the interaction requires specification of the QRF employed for system
identification as discussed in Section 3 below.
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2.2. Example: Hawking Radiation

For an asymptotic observer A, coupled pair annihilation and production near a
holographic screen B, with one positive- and one negative-energy mode transiting the
screen (Figure 2a) is indistinguishable from a scattering event at B (Figure 2b). Hence far
from a black hole (BH), Hawking radiation from the BH is indistinguishable from scattering
from the stretched horizon of the BH. Lemma 1 forbids any modes detectable by A from
carrying information about the entanglement entropy S(B) as discussed above; hence the
only observable entropy of B is the classical, thermodynamic entropy S(L(B)) given by
Equation (1).

Figure 2. (a) Hawking pair annihilation-production near a BH is asymptotically indistinguishable
from (b) symmetric scattering from the stretched horizon.

The distinction between the thermodynamic entropy S(L(B)) and the entanglement
entropy S(B) for B a BH, and hence B the stretched horizon, has been recently clarified
from a number of perspectives [11–14], showing in particular that preserving unitarity does
not require a firewall [15] to prevent detection of excess entanglement. Considering the
outgoing states to be measured by some observer requires specifying a QRF as noted above;
we consider this issue in the particular case of Hawking quanta further in Section 3.4 below.

2.3. Symmetry across B Corresponds to “Free Choice” of QRFs

A QRF deployed by A, i.e., implemented by HA, corresponds to a set of observables
held fixed while other observables are allowed to vary [6,8] as discussed more explicitly
in Section 3 below. It thus corresponds to a subset of the MA

i . Associative groupings of
the MA

i in Equation (2) are clearly independent of associative groupings of the MB
i ; hence

choices of QRF by A have no bearing on choices of QRF by B or vice versa. Equivalently,
swapping the labels A and B has no effect on Equation (2).

This “free choice” of QRFs corresponds to a the absence of superdeterminist correla-
tions between A and B. Such correlations implement entanglement [16,17] so are forbidden
if |AB〉 = |A〉|B〉. We discuss the effects of locally breaking this free-choice symmetry in
Section 4 below.
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3. Reference Frame Induced Decoherence
3.1. QRFs for System Identification

From A’s perspective, the partial state |B〉A encoded on B is pure: it encodes all of the
information about B that is accessible, even in principle, to A. Mixed or decoherent states
(we will use these terms interchangeably), in contrast, always indicate a lack of access to
information that is in principle accessible: a state ρS of S is decoherent if there is some
non-null system E such that ρS = TrEρSE = TrE|SE〉〈SE|. In this case, E is the purifier or
“environment” of the S and |SE〉 is the purification of ρS by E (see [18–20] for extended
discussions). That such a purifying E exists physically, not just formally, for any mixed ρS

is a fundamental assumption of quantum theory [21,22], sometimes stated as an explicit
axiom [23]. From an operation perspective, E comprises degrees of freedom that interact
with those of S but that cannot be, or at least are not observed when ρS is measured. If ρS

is, for example, the state of a particle beam, E would include the degrees of freedom of the
ion source, the magnetic fields, the ambient vacuum in the beam lines, etc.

The minimal setting employed here avoids the circularity that arises when a system-
environment decomposition B = SE is stipulated a priori [24–27] by forcing S to be
identified by some QRF implemented by A. As shown in [6], any QRF can be specified by
a cocone diagram (CCD), a category-theoretic construction comprising a hierarchical ar-
rangement of Barwise-Seligman Information Flow binary classifiers/classifications Aα [28]
as depicted in Figure 3. These classifiers represent observables in context; namely, each
classifier is a conceptual representation Aα = 〈eventα, (condition, context)α, valuationα〉
(essential details of the concepts and constructions are recalled in Appendix A, and in
particular Appendix A.1 for the latter concept) (More generally, these classifiers can be seen
as a triad of: (i) events (atomic, observed or experienced, imposition of boundaries, etc.);
(ii) conditions/contents/influences as paired with contexts/measurements/detectors; and
(iii) valuation. Again see Appendix A.1 for the formal details). Each classifier Aα is valued
in {−1, 1} in accordance with its associated operator MA

α implementing “yes/no questions”
as intrinsic to Equation (2) ([6], Section 3.2). In this sense,Aα may be alternatively regarded
as an eigen-classifier for MA

α .
To construct the CCD, we select a subset {MA

k , . . . MA
n } of measurement operators

and assign to each a binary classifier Ak, . . . ,An, respectively, with each requiring a fixed
value, +1 or −1, from the corresponding operator; the Ak . . .An thus specify a fixed bit
string as input to the CCD. Further binary classifiers, each of which can be thought of as a
classical logic gate, are added to form “hidden layers” C; the maps between classifiers are
“infomorphisms” as defined in [28] that satisfy the diagram-commutativity requirements
for a cocone (see [29,30] for general category-theoretic definitions, Reference [31] for dis-
cussion of the cocone as a general representation of complex conditionals, Reference [32]
for applications, examples, and discussion of the obvious analogy with artificial neural
networks, and [6] for summaries of the relevant definitions as they apply in the current
context). As shown in [6], a CCD exists over a subset Ak . . .An of classifiers if and only if
the corresponding subset {MA

k , . . . MA
n } of binary-valued operators all mutually commute

(see [33] for a formal proof). The colimit C of the CCD encodes the classical “output” of the
QRF as a bit string. As formulated in [33], the CCD then becomes manifestly a scale-free
context-dependent architecture. Operationally, it can be thought of as a “deep” neural
network with re-entrant connections [32]. In the general case these connections are imple-
mented by quantum processes (i.e., by HA); the intermediate classifiers at each layer C then
implement measurements, with the general form of (2), of the outcomes of these processes.

The channel implemented by the qubits q1...qN is free of classical noise by definition:
there is no external system to provide a noise source [6,8]. It is evident in Figure 3, however,
that this channel transmits a fixed classical bit string, e.g., (1, 1, 1, ..., 1) from B to A if but
only if A and B share a z axis. Hence we have:
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Figure 3. A cocone diagram (CCD) is a commuting diagram depicting maps (infomorphisms) fij

between (eigen-)classifiers Ai and Aj, maps gkl from the Ak to one or more channels Cl over subsets
of the Ai, and maps hl from channels Cl to the colimit C (cf. Equation (6.7) of [32]). Such a CCD
can be associated (double-headed arrows) with any subset of binary operators MA

k ...MA
n provided

that these operators all mutually commute. The CCD specifies, in this case, a classical algorithm
implemented by HA. The complete set of operators MA

i and MB
i in (2) together with the array of

mutually noninteracting qubits q1...qN (i.e., the screen B) implement the classical channel between A
and B. Free choice of QRFs by A and B corresponds to independent, free choice of z axis by A and B at
each qubit. Note that should the CCD fail to commute (in which case the colimit becomes undefined),
then theAi are considered as “non-co-deployable” (observables), and their corresponding distributed
system exhibits intrinsic contextuality ([33], Section 7).

Lemma 2. The channel implemented by a holographic screen between A and B is free of quantum
noise if and only if A and B share QRFs.

Proof. If A and B share QRFs, each channel qubit is prepared and then measured in the
same basis. As the preparation—measurement cycle is effectively instantaneous, prepared
and measured outcomes must be the same up to measurement resolution. If A and B do
not share QRFs, the preparation and measurement bases for each channel qubit may be
arbitrarily different, introducing arbitrary phase rotations, i.e., quantum noise, between B’s
preparation and A’s measurement.

Shared QRFs correspond to einselection of a preferred basis for decoherence [18,22] at
B. We show in Section 4 below that Lemma 2 strongly restricts classical communication,
and hence execution of local operations, classical communication (LOCC) protocols [7,34]
by spacelike separated observers.
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3.2. Reference and Pointer Measurements

The CCD in Figure 3 has a natural physical interpretation: it specifies the hierarchy
of logical constraints that must be satisfied to identify the outcome values produced by
the operators MA

k . . . MA
n , and hence the components k . . . n of the pure state |B〉A, as the

observed (effective or virtual) state ρS of an observed (effective or virtual) system S. The
state ρS of any such S has by convention two components, a time-varying pointer state
ρP that is of interest as a measurement outcome, and the remaining reference state ρR

that by remaining fixed over the macroscopic time required for multiple cycles of pointer
measurements enables the re-identification of the single, fixed system S with pointer state
ρP. The pointer state ρP here includes not just the traditional “pointer(s)” of S, but also
any adjustable “settings” of S that may vary during a sequence of measurements. The
reference state ρR, in contrast, specifies the fixed properties of the system S that fix its
identity and hence allow re-identification over time. If S is a macroscopic item of apparatus,
for example, these include both the exterior size, shape, color, brand name, and location
required to pick the apparatus out, e.g., by visual search, from the cluttered background of
the laboratory as a whole, as well as the internal structural and functional properties that
enable it to serve as a measurement device, i.e., as a QRF [10].

Following the notation of [6], we indicate by {MP
i } and {MR

j } the disjoint subsets of

MA
k . . . MA

n that measure ρP and ρR, respectively. Call the dimensions of these components
NP + NR = NS. As ρR serves as a fixed reference, clearly ∀i, j, [MP

i , MR
j ] = 0. Pointer

state measurements, however, generically do not commute; adjustable apparatus settings,
in particular, are useful only to the extent that they do not commute with pointer readings.
Hence generically, ∃i, j, [MP

i , MP
j ] 6= 0. Call the set of mutually-commuting subsets of

{MP
i }, and hence of classifiers AP

i , {Pi}; in this case a state ρS
i is computed by a CCD over

RPi. This decomposition is shown in a simplified notation in Figure 4. Clearly under these
conditions the joint state ρS must be separable as ρRρPi , i.e., the system components R and
P must be mutually decoherent.

Figure 4. A cocone diagram (CCD) computing an effective (or virtual) “system state” ρS comprises
classifier channels computing an effective pointer state ρPi and an effective reference state ρR (cf. [6]).
These channels define the effective “subsystems” R and Pi comprising S. The CCD acts on the
pure physical state |B〉A encoded by HAB on the holographic screen B (blue) separating A from B.
The computation represented by the CCD is implemented by the internal dynamics HA.

3.3. Sequential Pointer Measurements Induce Decoherence

State transitions Gij : ρS
i (t)→ ρS

j (t + ∆t), although associative and invertible, in gen-
eral do not commute, and have a set of multiple identities; hence they can be represented
as elements of a groupoid [35,36] ({Gij}, ◦) such that Gij ◦ Gji 6= Gji ◦ Gij if and only if
[MP

i , MP
j ] 6= 0 [6]. The action of ({Gij}, ◦) on this set of system states, indexed by a macro-
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scopic discrete time τ, is illustrated in Figure 5 (for the formal definition of the action of a
groupoid on a set, see, e.g., ([36], Section 10.4)).

Figure 5. A sequence of CCDs identifying R (blue triangles) and measuring pointer components
Pi, Pj, Pk . . . Pl . Transitions between CCDs are implemented by groupoid elements, e.g., Gij and
labeled by discrete macroscopic times τi. The operators MP

i can equally well be generalized to
subsets {MP}i of mutually-commuting pointer-state observables.

A reference state ρR computed by a CCD R from the outcome values of a set of
operators MR

j is, effectively, a logical constraint on the identities of the qubits qj that the

MR
j measure. Hence we have:

Lemma 3. In any system AB characterized by (2), fixing a reference state ρR over a macroscopic
time interval τ locally breaks the SN symmetry of the holographic screen B encoding the eigenvalues
of HAB.

Proof. Suppose the MR
j measure the states of NR = n− k qubits as shown in Figure 3;

we can neglect P and assume that the other qubits constitute the environment and are
swap-symmetric. Holding ρR fixed for τ is holding the NR outcomes of the MR

j fixed for

τ; ∀j, MR
j |qj(t)〉 = |1〉 or | − 1〉 for t within τ. This cannot be guaranteed if qj is swapped

for some environmental qi with an unconstrained state; hence any such swap must be
forbidden by a “selection rule.” This breaks the SN symmetry on B.

Lemma 3 is in fact obvious: the CCD R assigns each of the physical degrees of freedom
qj a specific role in the computation of ρR, one that an arbitrary qubit in an arbitrary
state cannot satisfy. The qubits qj are classically phase-locked by R, while the phases of
the environmental qubits can vary freely, preserving their swap symmetry. The CCD R
effectively divides B into two (not necessarily simply connected) regions, one in which
the qubits are classically phase-correlated and the other in which they are not. Any such
division induces decoherence between non-swap-symmetric and swap-symmetric qubits.
These conditions equally hold for any CCD measuring a pointer state ρPi .

Lemma 3 associates decoherence with system identification as a necessary prerequisite
of pointer-state measurement. As Zurek emphasized ([22] p. 1794),

[T]he formulation of the measurement problem and its resolution through the
appeal to decoherence require a universe split into systems. Yet, it is far from
clear how one can define systems given an overall Hilbert space ‘of everything’
and the total Hamiltonian.

Subsequent work demonstrated that no preferred decomposition of an overall Hilbert
space or its Hamiltonian could legitimately be assumed a priori [37,38], rendering all
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formulations of decoherence that assumed an a priori B = SE decomposition circular
(see [24–27] for relevant discussion). By characterizing all observations as mediated by
a holographic screen B, the GHP localizes the B = SE decomposition to the observer’s
QRFs [5,6]. All systems S and states ρS are, therefore, virtual in the precise sense of compu-
tational processes implemented on underlying, observationally inaccessible hardware [39]:
the observer A itself with its Hamiltonian HA.

3.4. Example: Mass and Hawking radiation QRFs for a BH

Suppose A employs a local QRF RBH (e.g., a local sample of the ambient photon field)
to measure both the position x and the mass M of a distant BH B and a particle detector Rr
to measure the momentum ~p of one or more quanta of radiation. Her task, familiar from
discussions of horizon complementarity [40] and the firewall paradox [15], is to determine
whether her local quantum r is a Hawking quantum rH from B (see [11–14] for relevant
discussion). As illustrated in Figure 6, answering this question requires a QRF RH that
associates ~p with an identified Hawking quantum.

Figure 6. Identifying a local quantum of radiation as a Hawking quantum rH from a distant BH
requires a local Hawking QRF RH . Lemma 3 rules this out.

Lemma 3 shows that the required RH cannot be implemented, even in principle:
determining that the BH has lost information requires observation over macroscopic time,
inducing decoherence on B. Hence not only is A prevented by B from obtaining information
about the BH entanglement entropy S(B) (Lemma 1); she cannot obtain entanglement
information about identified systems if distinct QRFs are required for their identification.
The entanglement entropy S(|B > |r >) is, in particular, experimentally inaccessible even
in principle. Horizon complementarity is, therefore, not required to prevent observations
of no-cloning violations by Hawking quanta; such observations cannot be made because
the QRF needed to identify an observable BH as the source of the quanta is unavailable.
Thought experiments in which observers measure entanglement entropies before and after
falling into a BH, as employed in, e.g., [15], are unrealizable even in principle.

The limitation imposed by Lemma 3 generalizes, via the ER = EPR hypothesis, to any
system with a spatially-distributed purifier, e.g., an “octopus” BH topologically connected
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to its entangled Hawking quanta by ER bridges [11,41]. The complete system state is pure
but unobservable in principle, as the QRFs required to localize the spatially-distributed
components would induce decoherence separately on each component. This problem
of QRF-induced decoherence in spatially-distributed purifiers is similarly relevant to
treatments of potential entanglement effects surviving the inflationary epoch, e.g., [42–45].
Bell-type communication protocols, e.g., [46–49], circumvent this problem by employing
classical communication, treated as an a priori preferred QRF, to provide localization
information as discussed in Section 4 below.

3.5. Computation and Memory Costs Induce Coarse-Graining

Provided their intermediate states are not recorded to a persistent, classical memory,
logically reversible computations can in principle be performed without net energetic cost;
logically irreversible computations, in contrast, cost at least ln2 kBT per bit [50,51]. What
is of interest in practice, however, is the incremental cost of computation, including the
cost of writing intermediate states to a classical memory, even if the computational step
is to be reversed later. An observation can only be considered to have been “made” if the
result is written to a classical memory from which it can later reported, e.g., classically
communicated to another observer [52]. A system S can, in particular, only be regarded
as “observed” at a time t if its reference state ρR(t) is written to a classical memory from
which it can be reported. System identification over macroscopic τ clearly requires writing
to and reading from such a memory as discussed further in Section 6 below.

The free energy required to fund the incremental cost of computing and recording
must be supplied by what Landauer [50] called the “non-information-bearing degrees of
freedom” of the computer and/or its environment, even if this free energy is repaid in part
later. Viewed on the output side, i.e., in terms of A’s action on B, these non-information-
bearing degrees of freedom exhaust the waste heat generated by the computing and
recording processes. This distinction between information-bearing and non-information-
bearing degrees of freedom breaks SN symmetry as discussed above. As shown in [6],
this symmetry breaking can be expressed thermodynamically as the requirement that
βR, βP > βE ≥ ln 2, where βE is the efficiency of the operators ME

k acting on E. The
environment E provides, in other words, the incremental free energy required to irreversibly
identify R and measure P. The fuel value βEkBT is independent of the bit value (+1 or −1)
of the outcome; hence these outcomes are “non-information-bearing” for the computation
implemented by HA. They therefore retain full permutation symmetry, justifying the trace
over their joint state.

Any classical computation can be performed reversibly, e.g., with Toffoli gates, and
any reversible computation can be performed with some unitary operator [46]. The only
obligate classical steps in computing either ρR or ρPj are, therefore, the initial step of
writing the “input” outcomes of the MR

j and the selected MP
i onto the relevant classifiers

and the final step of writing the time-stamped joint state specification ρRPj on a classical
memory. The criterion of classicality for the memory is operational: the time-stamped
state specification must be reportable at any later time without disturbing other processes.
For a perfectly efficient system, the free energy required to write each (Reference, Pointer)
outcome ρRPj to memory is, therefore:

∆Hj ≥ ln2(NR + NP + Nρ + Nτ)kBT, (3)

where NR + NP is the number of bits required to record the inputs, Nρ is the number of
bits required to record ρRPj , Nτ is the number of bits required to record the timestamp.
This incremental ∆Hj must be supplied by E during each interval τj, so (3) places a lower
limit NE ≥ NR + NP + Nρ + Nτ on the number of qubits of E and therefore on the total
area A(B) of the holographic screen B. In any realistic system thermodynamic efficiency is
less than ideal; hence βE > ln2 and A(B) is correspondingly larger.
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As NR + NP remains fixed, ∆Hj is minimized as Nρ + Nτ → 0, i.e., as classical
memory is coarse-grained relative to B. We can, therefore, generically expect QRFs to
encode high redundancy over states |B〉A mapped to the same ρRPj , i.e., we can expect
any CCD implementing a QRF to include logical OR gates and hence to lose information.
Optimal coarse-graining jointly minimizes the cost of memory and the cost of redundancy.
Furthermore, any QRF that is coarse-grained engenders redundancy and can be considered
as a quantum error correcting code (QECC) [46]. This is relevant to the discussion in
Section 3.4 above: a QEEC can be used to reconstruct local effective field theory observables,
which as pointed out in [53], are applicable to BH states whose entanglement entropy falls
short of saturating the Bekenstein-Hawking bound. Such local observables are designed
to protect coherence in the Hilbert space of codes by correcting errors due to the emission
of Hawking quanta, by entangling radiation within other regions of Hilbert space and
inducing entanglement swaps that increase the entanglement entropy of the BH interior
over time. As discussed in Section 3.4 above, such postulated entanglement swaps are
unobservable even in principle.

4. Reference Frame Induced Entanglement

Communication protocols that employ shared entanglement depend on shared QRFs,
e.g., shared z-axis QRFs for sz measurements [8]. This suggests that the shared entan-
glement is in fact induced by the shared QRFs, a suggestion consistent with the general
observer-dependence of entanglement [37,38].

Consider a Bell protocol described in the lab frame, as shown in Figure 7. An entangled
state is distributed from a source to Alice and Bob, who remain spacelike-separated through-
out the protocol’s operation. They are free to adjust their detector settings during the interval
∆tset. Following data processing (the interval ∆tproc), Bob sends his classically-encoded
measurement outcomes to Alice via a classical channel. Alice can then compute the joint
statistics, obtaining a Bell-inequality violation and hence an observation of entanglement
at tmeas. Alice’s ability to compute the joint statistics, and hence to observe entanglement,
critically depends on two assumptions. First, Alice must know the code that Bob employs to
encode his results; effectively, they must “speak the same language”. Second, the communi-
cation from Bob to Alice must be classical, i.e., must not involve a quantum measurement [7].
If the communication is not considered classical, i.e., if Bob sends Alice a QRF with which he
is entangled, Alice must identify the transmitted QRF in order to measure its state, inducing
decoherence as discussed in Section 3.4 above. These two assumptions are operationally
equivalent: Alice scrambling Bob’s message by decohering a transmitted quantum state has
the same effect as Alice scrambling Bob’s classical coding scheme by employing, e.g., an
obsolete one-time pad. In either case, Alice does not “understand” Bob’s encoded results
and her subsequent statistical analysis is meaningless [33].

The assumption of classical communication is, effectively, the assumption of a pre-
ferred pointer measurement that returns the content of the communicated message without
requiring prior identification, via a separate measurement, of the physical medium, i.e., the
QRF, via which the message has been transmitted. Alice, in other words, does not have to
identify Bob to receive his message, just as Wigner does not, in his famous thought experi-
ment, have to identify his friend to receive his friend’s observational outcomes [54]. Hence
assuming classical communication is assuming an a priori shared QRF [8]. This breaks
the free-choice symmetry across B as discussed in Section 2.3 above; if B is considered a
qubit array as in Figure 3, the assumption of classical communication is the assumption
that A and B use identical z-axis QRFs on a subset of qubits as confirmed by Lemma 2
above. Call this subset of qubits message; the observed states |message〉A and |message〉B
are superdeterministically correlated. Choosing a decomposition that identifies the shared
QRFs shows that |message〉 = |message〉AB is a single pure state. That such a pure state
exists is the operational meaning of the requirement that Alice and Bob “share a language”
for classical communication.
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Figure 7. A typical Bell protocol described in the lab frame. Sharing of measurements results via
a classical channel is required to observe a Bell-inequality violation. If Alice’s interaction with
Bob’s message is viewed as an ordinary quantum measurement, the entanglement disappears as in
Section 3.4 above.

Redescribing the Bell protocol in the frame of the entangled state, as illustrated in
Figure 8, makes both the shared QRF and its entangled state manifest. Hence we have:

Theorem 1. Sharing entanglement requires shared entanglement.

Proof. Spacelike-separated Alice and Bob can observe entanglement only if they can
compare their observational outcomes. By Lemma 2, this requires an a priori shared QRF.
Classical transfer of a QRF also requires an a priori shared QRF [8]; hence the shared QRF
can only be shared as an entangled state.

Superdeterminist correlations, i.e., absence of free choice of QRFs, is a general feature
of LOCC communication protocols. In the Bell protocol, Alice’s response to the bit string
received from Bob is predetermined by the requirement of a shared QRF. Other proto-
cols superdetermine the “choices” made during ∆tset, and hence the outcomes observed.
Entanglement-enabled secure communication protocols, for example, require Alice and
Bob to deploy QRFs and execute measurement on an otherwise-uncharacterized qubit in
the order specified by the protocol. These protocols avoid decoherence, and hence enable
quantum communication, by rendering Alice’s and Bob’s QRFs effectively entangled for
the duration of the protocol. Here again, avoiding decoherence is equivalent, operationally,
to sharing a language in which, e.g., protocol instructions are classically communicated.
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Figure 8. (a) A Bell protocol in the frame of the entangled state (yellow circle). Alice and Bob collide
at tmeas, at which time they share, and together measure, the entangled state. (b) This is equivalent to
Alice and Bob sharing an entangled QRF that reports consistent pointer outcomes to each observer.

The special role played by classical communication in LOCC protocols has been in-
vestigated previously in extended Wigner’s friend experiments in which the outcomes of
classical communication between pairs of “observers” and “friends” are contrasted with
the outcomes of quantum measurements of “friends” by “observers” [55,56]. These experi-
ments have been interpreted as showing, subject to an assumption of no superdeterminism,
that observed events cannot be regarded as observer-independent. By treating all observed
events as relative to observer-implemented QRFs, we show here that the assumption of
classical communication between observers, widely regarded as physically inconsequential
prior to [55,56], is to enforce local superdeterminism.

5. Reference Frame Induced Contextuality

Contextuality and entanglement are conceptually equivalent [57]. For a fixed P,
switching between QRFs over MR

j and MT
k , where [MR

j , MT
k ] 6= 0 for at least one pair

j, k induces contextuality, i.e., no non-contextual probability distribution consistent with
the Kolmogorov axioms and hence with Dutch-book coherence can be defined over the
combined set of outcomes [6,33].

Consistent with the findings of [55,56], no Kolmogorov-consistent, non-contextual
probability distribution can be defined over the combined outcomes of Alice’s and Bob’s
observations unless it can be demonstrated, for the relevant P, and for R and T the QRFs
deployed by Alice and Bob, respectively, that ∀j, k, [MR

j , MT
k ] = 0. This cannot, however,

be demonstrated by any observer of Alice and Bob, as no such observer has, by Lemma 1,
access to the internal Hamiltonians HAlice or HBob.

This result can be stated in more formal terms of undecidability.



Symmetry 2021, 13, 408 14 of 20

Theorem 2. Whether arbitrarily-chosen QRFs R and T compute the same function f is finite
Turing undecidable.

Proof. Let f designate the function computed by R, i.e., the function computed by the
CCD representing R; we then ask whether T computes this same f . Whether an arbitrarily
chosen computer computes any non-trivial function f cannot, however, be decided by any
finite Turing machine [58]. Hence whether T computes f is finite Turing undecidable.

As shown in [33], contextuality induced by non-commuting QRFs renders the Frame
problem, the problem of circumscribing the degrees of freedom that do not change their
values as the result of an action, e.g., a measurement [59] unsolvable even in domains with
small numbers of degrees of freedom (cf. [60]).

Theorems 1 and 2 have as an obvious corollary:

Corollary 1. Whether two observers share an entangled state is finite Turing undecidable.

Hence whether Alice and Bob have successfully completed a quantum communication
protocol is finite Turing undecidable.

6. Writing and Reading Classical Memories

As noted earlier, a sequence of observations made over macroscopic time is only
reportable at some later time if the observations have been recorded on a classical memory.
Distinguishing measurements made at different times requires, moreover, some method
of distinguishing the memories. We therefore assume that the bit string composing each
memory record includes a substring encoding a time stamp τj, which we take to be generated
by the groupoid action of the Gij. Considering this classical memory to be implemented
by HA would prima facie require internal decoherence, i.e., disrupt the purity of |A〉. This
can be avoided if A is regarded as writing all classical memories on B. As the result to be
written to memory is coarse-grained compared to the input from which it was generated
(Section 3.5), only a relatively small number of qubits on B need be devoted to memory.

Reversing the arrows in a CCD yields the dual construction, a cone diagram (CD)
with the single source classifier the limit over the bottom-level classifiers [32]. A CD can
be constructed to encode any finite bit string on an underlying bit array, i.e., to write any
finite bit string to memory. Regarding each memory bit as a preparation instruction for a
corresponding qubit on B, we can represent a memory-write operation to B as in Figure 9.

Figure 9. A CD Wjj (green triangle) specifies a memory-write operation of the time-stamped state
(ρRPj , τj) to B. The timestamp τj is generated by the groupoid action Gij.
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Reading the memory reverses the arrows on the memory-write CD Wjj to a CCD, i.e.,
a QRF for retrieving the time-stamped value (ρRPj , τj). Writing readable memory records
on B imposes phase correlations across time on B; such correlations obviously further
disrupt the SN symmetry of B. Reading and rewriting memory records also imposes an
energetic cost as in Section 3.

7. Conclusions

We have investigated, in this paper, a generalization of the HP in which interactions
HAB between finite quantum systems A and B that maintain a separable joint state are
represented as exchanges of information across a holographic screen B. While the role of B
is ancillary to the action of HAB, the permutation symmetry of B is broken when the internal
Hamiltonian HA is considered to implement QRFs that identify “systems” and measure
their states. This symmetry breaking induces decoherence of identified systems by forcing
the “environment” that remains to serve as both free energy source and waste heat sink.
Observable entanglement, contextuality, and classical memory are, in this representation,
logical and temporal relations between QRFs implemented by HA.

It is natural to interpret the holographic screen B not merely as ancillary, but as a
“physical” space, i.e., a stretched horizon, separating A from B. In this context, broken
permutation symmetries on B become broken exchange symmetries between points in the
2 + 1 spacetime defined by (B, τ), τ a characteristic “macroscopic” time scale for HAB as
above (see [61] for details). From A’s observational perspective, exchange-inequivalent
regions of (B, τ) correspond to coarse-grained, decoherent “systems” while exchange-
symmetric regions are “empty space” that supplies free energy and exhausts waste heat.
That the GHP itself forces these virtual decoherent systems to obey gauge symmetries is
shown in [61].

It is tempting to speculate that a third spatial dimension is induced when, but only
when, A implements QRFs capable of identifying single systems across time while varying
pointer observables such as size, shape, and color, and that inertial mass is a QRF rep-
resenting the observable response of an identified system to actions by A. Whether the
fundamental symmetries of space, time, and matter, or even all of physics can be completely
reconstructed “within” an observer A, and hence viewed as a computation implemented
by HA, remains to be determined. The fact that physics is done by physicists, systems that
appear to interact with their environments via a Hamiltonian of the form (2), suggests that
such a reconstruction is possible; possible routes forward are discussed in [62–64].

It is, finally, increasingly being suggested that the entropic structure of a BH may be
more than a phenomenological correlate of its mass, possibly providing a route toward
defining mass [65], specifying nontrivial internal topological structure [11], or even gener-
ating the phenomenology of dark energy or dark matter [66]. Theoretical investigation of
the QRFs implemented by a BH may, therefore, offer exciting future developments.
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Abbreviations
The following abbreviations are used in this manuscript:

BH Black Hole
CCD Cocone Diagram
CD Cone Diagram
EPR Einstein-Podolsky-Rosen
ER Einstein-Rosen
GHP Generalized Holographic Principle
LOCC Local Operations, Classical Communication
QECC Quantum Error-Correcting Code
QRF Quantum Reference Frame

Appendix A. The Basics of Channel Theory Information Flow and Context Dependency

The Channel Theory of [28] introduces the idea of a “classifier” (or “classification”) as
accommodating a “context” in terms of its constituent “tokens” in some language and the
“types” to which they belong.

Definition A1. A classifier A is a triple 〈Tok(A), Typ(A), |=A〉 where Tok(A) is a set of “to-
kens”, Typ(A) is a set of “types”, and |=A is a “classification” relation between tokens and types.

Note that this definition specifies a classifier/classification as an object in the category
of Chu spaces [67–69] where ‘|=A’ is realized by a satisfaction relation valued in some set
K (with no structure assumed). The arrows (morphisms) between classifiers are specified
by the following:

Definition A2. Given two classifiersA = 〈Tok(A), Typ(A), |=A〉 andB = 〈Tok(B), Typ(B), |=B
〉, an infomorphism f : A → B is a pair of maps

−→
f : Tok(B) → Tok(A) and

←−
f : Typ(A) →

Typ(B) such that ∀b ∈ Tok(B) and ∀a ∈ Typ(A),
−→
f (b) |=A a if and only if b |=B

←−
f (a).

Information is inherently a physical mode of distinctions and relationships between
them, and not simply a reduction to a quantity of bits as it would be for Shannon infor-
mation that passively neglects the substance of reasoning. Rather, it instead conforms to
the set of logical constraints as imposed by Definition A2. An infomorphism as a mapping
between classifiers provides the basic building blocks towards constructing multi-level,
quasi-hierarchical classification systems. Such a framework of information transfer is
indicative of causation, which itself may be viewed as a form of computation in view of
the regular relations in a distributed system [70]. References [6,32,33] bring to the forefront
many examples, and applications of the above concepts that include probability distribu-
tions, Bayesian belief networks, event space structures, formal concept analysis, and fuzzy
relationships (as further relevant to this issue, let us point out that the Sorkin model of
spacetime causal sets [71,72] has been interpreted in terms of classifiers (Chu spaces) in [73]
(reviewed in [32])). In particular, Reference [33] focuses on orders of contextuality with
ramifications to active inference and to the Frame Problem.

The specifics of transmitting information via classifiers and infomorphisms lead,
in [28], to defining the idea of an information channel over classifiers, the most general of
which leads to the categorical notion of a cocone with the core C the colimit of all possible
upward-going structure-preserving maps from the classifiers Ai. Such a colimit core, when
it exists, can be regarded as a classifier which embraces the totality of information that is
common to the component classifiersAi. The resulting structure is a cocone diagram (CCD)
as exemplified Figure 3. Within such a framework, the means by which channels encode
sets of mutual constraints between classifiers is regulated by a local logic as presented
formally in ([28], Ch. 12) (reviewed in [32,33]). Basically, the idea is that the types of a
(regular) theory specify the logical structure of a given situation. A local logic is essentially
a classifier having a (regular) theory along with a subset of tokens that satisfy all constraints
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of the theory as specified by a sequent (a sequent M |=A N of a classifier A is a pair of
subsets M, N of Typ(A) such that ∀ x ∈ Tok(A), x |=A M⇒ x |=A N). An infomorphism
preserving this additional logical structure is then promoted to a logic infomorphism.
In short then, a local logic “identifies” the token(s) satisfying all of the types, the logic
infomorphisms are those infomorphisms that transfer token-identification information
between local logics, and the channels comprise sets of (logic) infomorphisms encoding
mutual constraints that assemble multiple identified tokens. As demonstrated in [74], a
sequent of a theory can be weakened to a conditional probability such that a CCD becomes a
network of hierarchical Bayesian inference, as reviewed and formulated in [32,33] (cf. [75]),
and whose structure is compatible with the variational free energy principle as the latter
is fundamental to the precision of perceptual inference [76] (the sequent relation can be
weakened by requiring only that if x |=A M, there is some probability Prob(N|M) that
x |=A N. Essentially it is how a conditional probability interprets the logical implication
“⇒” [77]).

Appendix A.1. Example: Observables in Context

One fundamental example incorporating “context”, instrumental in [33] has the fol-
lowing Chu space ingredients: Consider the following countable (in practice, finite) sets:

(i) A a set of “events” (in the general sense of the term, e.g., as observed value combina-
tions or atomic), as related to

(ii) a set B of conditions specifying “objects/contents” or “influences,” and
(iii) a set R of contexts (or, in certain instances, a set of “detectors”, “measurements” or

“methods”).

The set B can be decomposed as B = BM ∪ BC (disjoint union), where BM contains
“objects/contents” or “degrees of freedom” that are observed or measured in some event
a ∈ A, and BC contains what is not observed in the events in A. This leads to defining a
‘large’ space,

X := B× R = (BM ∪ BC)× R, (A1)

in assuming that A, B and R are subsets of the same (even larger) probability space P
(We do not make any assumptions about corresponding types of probability distributions
(e.g., discrete versus continuous) in relationship to P . Neither do we specify the nature
of random variables, nor the possible orders of “connectedness” (of distributions)). Thus,
based on this data we consider the classifier,

A = 〈A, X, |=A〉, (A2)

as comprising observables in context, where as in Section 3, the classification relation ‘|=A’
is realized by the Chu space valuation in the set K = {−1, 1}. Notably, in [33], ‘|=A’ can
be realized for an inferential process by the conditional probability p(a|x) = p(a|{b, c}),
whenever defined, for a ∈ A, b ∈ B and c ∈ R, and which for suitable indexing, leads to an
information flow of hierarchical Bayesian inference within a CCD [33]. The background to
the results in Section 5 here can be found in ([33], Section 7). In particular, ([33], Th. 7.1)
states the criteria for intrinsic contextuality (non-co-deployable observables) in terms of
noncommutativity of a CCD. Note that the above classifier (Chu space) formulism of
contextuality is very general. Special cases of the set X = B × R are the sets of binary
random variables labelled by a measurement (contents-context) system as basic to the
theory of Contextuality-by-Default [78,79]. Much amounts to the question of determining
the nature of an empirical model e relative to how a probability distribution can be obtained
as the marginals of a global probability distribution on the outcomes to all measurements.
For example, e is said to be contextual in [80] if the corresponding probability distribution
cannot be obtained by such global means. This has a compatible interpretation in terms
of the non-existence of a global section of a sheaf defined relative to a “measurement
cover” in [81]. These methods of studying contextuality are also very general, and as
for those of [33], can extend beyond quantum theory to such disciplines as linguistics
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and psychology. To see the explicit connections between these various approaches would
indeed be a worthwhile undertaking.
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