“Double-Twist”-Based Dynamic Induction of Optical Activity in Multichromophoric System
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Solid-State Molecular Structure and Molecular Organization in the Crystals of Diimines
3.2. Chirogenesis in Imines 2a–2k
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry; W.H. Freeman & Co: New York, NY, USA, 2010. [Google Scholar]
- Steed, J.W.; Atwood, J.L. Supramolecular Chemistry; Wiley-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Testa, B.; Caldwell, J.; Kisakürek, M.V. (Eds.) Organic Stereochemistry. Guiding Principles and Biomedical Relevance; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Eliel, E.L.; Wilen, S.H.; Mander, L.N. Stereochemistry of Organic Compounds; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Crossley, R. The relevance of chirality to the study of biological activity. Tetrahedron 1992, 48, 8155–8178. [Google Scholar] [CrossRef]
- Brooks, W.H.; Guida, W.C.; Daniel, K.G. The Significance of Chirality in Drug Design and Development. Curr. Top. Med. Chem. 2011, 11, 760–770. [Google Scholar] [CrossRef]
- Mannschreck, A.; Kiesswetter, R.; von Angerer, E. Unequal Activities of Enantiomers via Biological Receptors: Examples of Chiral Drug, Pesticide, and Fragrance Molecules. J. Chem. Educ. 2007, 84, 2012–2018. [Google Scholar] [CrossRef]
- Todd, M. (Ed.) Separation of Enantiomers; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Pellissier, H. Chirality from Dynamic Kinetic Resolution; RSC: Cambridge, UK, 2011. [Google Scholar]
- Helmchen, G.; Hoffmann, R.W.; Mulzer, J.; Schaumann, E. (Eds.) Stereoselective Synthesis; G. Thieme: Stuttgart, Germany, 1996. [Google Scholar]
- Jacobsen, E.N.; Pfalz, A.; Yamamoto, H. (Eds.) Comprehensive Asymmetric Catalysis; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Berova, N.; Polavarapu, P.L.; Nakanishi, K.; Woody, R.W. (Eds.) Comprehensive Chiroptical Spectroscopy (Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules); Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Rodger, A.; Nordén, B. Circular Dichroism & Linear Dichroism; Oxford University Press Inc.: New York, NY, USA, 1997. [Google Scholar]
- Wolf, C. Dynamic Stereochemistry of Chiral Compounds: Principles and Applications; Royal Society of Chemistry: Cambridge, UK, 2008. [Google Scholar]
- Wolf, C.; Bentley, K.W. Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output. Chem. Soc. Rev. 2013, 42, 5408–5424. [Google Scholar] [CrossRef]
- Borovkov, V.V.; Hembury, G.A.; Inoue, Y. Origin, Control, and Application of Supramolecular Chirogenesis in Bisporphyrin-Based Systems. Acc. Chem. Res. 2004, 37, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, A.; Pereira-Cameselle, R.; Poklar Ulrih, N.; Petrovic, A.G.; Alonso-Gómez, J.L. Chiroptical Sensing: A Conceptual Introduction. Sensors 2020, 20, 974. [Google Scholar] [CrossRef] [Green Version]
- Herrera, B.T.; Pilicer, S.L.; Anslyn, E.V.; Joyce, L.A.; Wolf, C. Optical Analysis of Reaction Yield and Enantiomeric Excess: A New Paradigm Ready for Prime Time. J. Am. Chem. Soc. 2018, 140, 10385–10401. [Google Scholar] [CrossRef] [PubMed]
- Pasini, D.; Nitti, A. Recent Advances in Sensing Using Atropoisomeric Molecular Receptors. Chirality 2016, 28, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Berova, N.; Pescitelli, G.; Petrovic, A.G.; Proni, G. Probing molecular chirality by CD-sensitive dimeric metalloporphyrin hosts. Chem. Commun. 2009, 5958–5998. [Google Scholar] [CrossRef]
- Kasha, M.; Rawls, H.F.; El-Bayoumi, S.A. The Exciton Model in Molecular Spectroscopy. Pure Appl. Chem. 1965, 11, 371. [Google Scholar]
- Harada, N.; Nakanishi, K. Circular Dichroism Spectroscopy: Exciton Coupling in Organic Stereochemistry; University Science Books: Mill Valley, CA, USA, 1983. [Google Scholar]
- Gawroński, J.; Kwit, M.; Gawrońska, K. Helicity Induction in a Bichromophore: A Sensitive and Practical Chiroptical Method for the Absolute Configuration Determination of Aliphatic Alcohols. Org. Lett. 2002, 4, 4185–4188. [Google Scholar] [CrossRef] [PubMed]
- Gawroński, J.; Grajewski, J. A superior molecular bichromophore for the determination of absolute configuration of primary amines. Tetrahedron Asymmetry 2004, 15, 1527–1530. [Google Scholar] [CrossRef]
- Carmo dos Santos, N.A.; Badetti, E.; Licini, G.; Abbate, S.; Longhi, G.; Zonta, C. A stereodynamic fluorescent probe for amino acids. Circular dichroism and circularly polarized luminescence analysis. Chirality 2018, 30, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Iwaniuk, D.P.; Wolf, C. A Stereodynamic Probe Providing a Chiroptical Response to Substrate-Controlled Induction of an Axially Chiral Arylacetylene Framework. J. Am. Chem. Soc. 2011, 133, 2414–2417. [Google Scholar] [CrossRef] [PubMed]
- Anyika, M.; Gholami, H.; Ashtekar, K.D.; Acho, R.; Borhan, B. Point-to-axial chirality transfer: A new probe for “sensing” the absolute configurations of monoamines. J. Am. Chem. Soc. 2014, 136, 550–553. [Google Scholar] [CrossRef]
- Huang, X.; Rickman, B.H.; Borhan, B.; Berova, N.; Nakanishi, K. Zinc porphyrin tweezer in host-guest complexation: Determination of absolute configurations of diamines, amino acids, and amino alcohols by circular dichroism. J. Am. Chem. Soc. 1998, 120, 6185–6186. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.; Meng, F.; Dai, C.; Cheng, Y.; Zhu, C. Central-to-Axial Chirality Transfer-Induced CD Sensor for Chiral Recognition and ee Value Detection of 1,2-DACH Enantiomers. Macromol. Chem. Phys. 2015, 216, 1925–1929. [Google Scholar] [CrossRef]
- Mądry, T.; Czapik, A.; Kwit, M. Point-to-axial chirality transmission—A highly sensitive triaryl chirality probe for stereochemical assignments of amines. J. Org. Chem. 2020, 85, 10413–10431. [Google Scholar] [CrossRef]
- Superchi, S.; Casarini, D.; Laurita, A.; Bavoso, A.; Rosini, C. Induction of a preferred twist in a biphenyl core by stereogenic centers: A novel approach to the absolute configuration of 1, 2-and 1, 3-diols. Angew. Chem. Int. Ed. 2001, 40, 451–454. [Google Scholar] [CrossRef]
- Superchi, S.; Bisaccia, R.; Casarini, D.; Laurita, A.; Rosini, C. Flexible Biphenyl Chromophore as a Circular Dichroism Probe for Assignment of the Absolute Configuration of Carboxylic Acids. J. Am. Chem. Soc. 2006, 128, 6893–6902. [Google Scholar] [CrossRef]
- Kwit, M.; Rychlewska, U.; Gawroński, J. Induced Homohelicity of Diphenimide Bis-propellers. New J. Chem. 2002, 26, 1714–1717. [Google Scholar] [CrossRef]
- Vergura, S.; Pisani, L.; Scafato, P.; Casarini, D.; Superchi, S. Central-to-axial chirality induction in biphenyl chiroptical probes for the stereochemical characterization of chiral primary amines. Org. Biomol. Chem. 2018, 16, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, S.; Nakamura, M.; Yamaguchi, A.; Ikeda, M.; Habata, Y. Combination of a New Chiroptical Probe and Theoretical Calculations for Chirality Detection of Primary Amines. Org. Lett. 2013, 15, 5738–5741. [Google Scholar] [CrossRef] [PubMed]
- Dutot, L.; Wright, K.; Gaucher, A.; Wakselman, M.; Mazaleyrat, J.-P.; De Zotti, M.; Peggion, C.; Formaggio, F.; Toniolo, C. The Bip Method, Based on the Induced Circular Dichroism of a Flexible Biphenyl Probe in Terminally Protected -Bip-Xaa*-Dipeptides, for Assignment of the Absolute Configuration of β-Amino Acids. J. Am. Chem. Soc. 2008, 130, 5986–5992. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.; Zha, D.; Ye, H.; Hai, Y.; Zhou, Y.; Anslyn, E.V.; You, L. Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System. Angew. Chem. Int. Ed. 2018, 57, 1300–1305. [Google Scholar] [CrossRef] [PubMed]
- Bentley, K.W.; Joyce, L.A.; Sherer, E.C.; Sheng, H.; Wolf, C.; Welch, C.J. Antenna Biphenols: Development of Extended Wavelength Chiroptical Reporters. J. Org. Chem. 2016, 81, 1185–1191. [Google Scholar] [CrossRef]
- Suzuki, A. Cross-coupling reactions via organoboranes. J. Organomet. Chem. 2002, 653, 83–90. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. TD-CAM-B3LYP/6-311++G(d,p)//B3LYP-GD3BJ/6-311++G(d,p) Method as Implemented in Gaussian Software: Gaussian 09; revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter Mater. Phys. 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.; Handy, N. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.D.; Dewey, T.M.; Rebek, J. Synthetic and structural studies of large and rigid molecular clefts. J. Am. Chem. Soc. 1994, 116, 5145–5149. [Google Scholar] [CrossRef]
- Degenhardt, C.; Shortell, D.B.; Adams, R.D.; Shimizu, K.D. Synthesis and structural characterization of adaptable shape-persistent building blocks. Chem. Commun. 2000, 929–930. [Google Scholar] [CrossRef]
- Gawroński, J.; Gawrońska, K.; Kacprzak, K. Chiral C and S Conformers of Aromatic Diimide Triads. Chirality 2001, 13, 322–328. [Google Scholar] [CrossRef] [PubMed]
Compound | UV (nm) | ECD (nm) |
---|---|---|
2a | 4600 (319); 45,000 (237); 72,400 (196) | 1.7 (320); −4.1 (299); 19.0 (270); −1.6 (252); 9.2 (233); −12.8 (209); 5.9 (194) |
2b | 39200 (238); 65,600 (196) | 3.2 (321); −5.3 (300); 21.7 (270); −0.8 (253); 18.8 (236); −16.8 (211); −7.6 (203); −9.0 (200); 2.6 (194) |
2c | 31,400 (274); 46,300 (238); 78,300 (192) | −6.0 (316); 6.5 (297); −23.3 (269); 0.7 (254); 36.1 (235); 17.0 (212); 8.7 (204); 12.3 (199); 4.6 (194) |
2d | 43,800 (238); 73,100 (196) | −3.9 (316); 1.4 (299); −11.8 (270); −1.1 (254); −25.9 (233); 10.8 (206); 15.4 (200); 7.5 (192); 12.8 (188) |
2e | 31,700 (280); 42,100 (238); 74,600 (193) | −4.4 (308); 3.7 (274); −6.1 (235); −2.3 (217); −3.5 (211); 8.6 (192) |
2f | 41600 (237); 67,700 (195) | 1.1 (320); 9.9 (270); −2.3 (252); −6.4 (208); 7.0 (195) |
2g | 30,700 (274); 45,000 (237); 129,600 (195) | 12.2 (313); −1.5 (278); 1.4 (268); −13.7 (240); 94.2 (201); −48.8 (186) |
2h | 6400 (321); 48,200 (238); 150,700 (189) | 4.4 (324); 1.6 (286); −0.7 (280); 5.1 (268); −14.8 (251); −28.8 (236); 3.2 (213); 95.9 (195) |
2i | 44,500 (274); 159,100 (227); 79,400 (188) | 1.4 (333); −4.7 (320); −24.4 (285); 28.8 (265); −37.8 (234); −24.2 (224); 18.7 (208); 24.3 (192) |
2j | 46,100 (276); 174,900 (226) | −7.4 (328); −5.9 (316); 2.9 (299); 3.9 (282); 113.4 (232); −184.9 (222); 15.6 (202); 18.1 (188) |
2k | 29,400 (267); 106,500 (206); 81,600 (188) | 2.4 (346); −3.1 (316); 0.9 (305); −60.9 (269); −12.0 (251); −45.0 (236); 53.3 (215); −18.2 (195) |
Conformer No. [a] | E | ΔE | Population | α1[b] | α2[b] | β1[c] | β2[c] | γ1[d] | γ2[d] | ω[e] |
---|---|---|---|---|---|---|---|---|---|---|
1 | −1815.80601 | 0.75 | 11 | −62 | −62 | −46 | −46 | −177 | −177 | 54 |
2 | −1815.80508 | 1.33 | 4 | 60 | −67 | 48 | −48 | −174 | −180 | 173 |
4 | −1815.80721 | 0.00 | 41 | 59 | 59 | 47 | 47 | −175 | −175 | −57 |
5 | −1815.80578 | 0.90 | 9 | −128 | −74 | 52 | −55 | −172 | 179 | −24 |
9 | −1815.80505 | 1.35 | 4 | −120 | 59 | 54 | 49 | −178 | −175 | 117 |
12 | −1815.80421 | 1.88 | 2 | 66 | 134 | 50 | −54 | −168 | 160 | 22 |
13 | −1815.80656 | 0.4 | 20 | −123 | −123 | 53 | 53 | −176 | −176 | −69 |
47 | −1815.8051 | 1.32 | 4 | −115 | −65 | 58 | −44 | 22 | −180 | −2 |
69 | −1815.80429 | 1.83 | 2 | 59 | 110 | 45 | −53 | −175 | −22 | −11 |
77 | −1815.80463 | 1.62 | 3 | −118 | 59 | 55 | 49 | 23 | −176 | 118 |
X−ray | −64 | 64 | −50 | 47 | −166 | −177 | −178 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mądry, T.; Czapik, A.; Kwit, M. “Double-Twist”-Based Dynamic Induction of Optical Activity in Multichromophoric System. Symmetry 2021, 13, 325. https://doi.org/10.3390/sym13020325
Mądry T, Czapik A, Kwit M. “Double-Twist”-Based Dynamic Induction of Optical Activity in Multichromophoric System. Symmetry. 2021; 13(2):325. https://doi.org/10.3390/sym13020325
Chicago/Turabian StyleMądry, Tomasz, Agnieszka Czapik, and Marcin Kwit. 2021. "“Double-Twist”-Based Dynamic Induction of Optical Activity in Multichromophoric System" Symmetry 13, no. 2: 325. https://doi.org/10.3390/sym13020325