On the Hybrid Fractional Differential Equations with Fractional Proportional Derivatives of a Function with Respect to a Certain Function
Abstract
:1. Introduction
2. Preliminaries
- 1.
- .
- 2.
- .
- 3.
- .
- 4.
- ,.
- (i)
- is Lipschitzian with Lipschitz constant μ,
- (ii)
- is completely continuous,
- (iii)
- for all ,
- (iv)
- , where .
3. Existence Results
- The functions and are continuous.
- For , for all , there exists a bounded function such that
- For , for all , there exist a function and a continuous non-decreasing function such that
4. Continuous Dependence on Parameters
- (A4)
- For , for all , there exists a constant such that
5. A Simulative Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus Models and Numerical Methods; World Scientific: Singapore, 2012. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B. V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific Publishing Company: Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 2010. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience, John-Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Srivastava, H.M.; Saad, K.M. Some new models of the time-fractional gas dynamics equation. Adv. Math. Models Appl. 2018, 3, 5–17. [Google Scholar]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Drivatives; Gordon and Breach Science Publishers: Longhorne, PA, USA, 1993. [Google Scholar]
- Abbas, M.I. Existence results and the Ulam stability for fractional differential equations with hybrid proportional-Caputo derivatives. J. Nonlinear Funct. Anal. 2020, 2020, 1–14. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and nonsingular kernel: Theory and application to heat transfer model. Thermal Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Keten, A.; Yavuz, M.; Baleanu, D. Nonlocal Cauchy Problem via a Fractional Operator Involving Power Kernel in Banach Spaces. Fractal Fract. 2019, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, M. European option pricing models described by fractional operators with classical and generalized Mittag-Leffler kernels. Numer. Methods Partial. Differ. Equ. 2021, 37. [Google Scholar] [CrossRef]
- Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2013, 279, 57–66. [Google Scholar] [CrossRef]
- Anderson, D.R.; Ulness, D.J. Newly Defined Conformable Derivatives. Adv. Dyn. Syst. Appl. 2015, 3, 109–137. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Jarad, F.; Alqudah, M.A.; Abdeljawad, T. On more general forms of proportional fractional operators. Open Math. 2020, 18, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T.; Rashid, S.; Hammouch, Z. More properties of the proportional fractional integrals and derivatives of a function with respect to another function. Adv. Differ. Equ. 2020, 2020, 303. [Google Scholar] [CrossRef]
- Alzabut, J.; Abdeljawad, T.; Jarad, F.; Sudsutad, W. A Gronwall inequality via the generalized proportional fractional derivative with applications. J. Inequalit. Appl. 2019, 2019, 101. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser. 2020, 13, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Laadjal, Z.; Abdeljawad, T.; Jarad, F. On existence-uniqueness results for proportional fractional differential equations and incomplete gamma functions. Adv. Differ. Equ. 2020, 2020, 641. [Google Scholar] [CrossRef]
- Baitiche, Z.; Guerbati, K.; Benchohra, M.; Zhou, Y. Boundary value problems for hybrid Caputo fractional differential equations. Mathematics 2019, 7, 282. [Google Scholar] [CrossRef] [Green Version]
- Derbazi, C.; Hammouche, H.; Benchohra, M.; Zhou, Y. Fractional hybrid differential equations with three-point boundary hybrid conditions. Adv. Differ. Equ. 2019, 2019, 125. [Google Scholar] [CrossRef] [Green Version]
- Borai, M.M.E.; Sayed, W.G.E.; Badr, A.A.; Tarek, A. Initial value problem for stochastic hyprid Hadamard Fractional differential equation. J. Adv. Math. 2019, 16, 8288–8296. [Google Scholar] [CrossRef]
- Hilal, K.; Kajouni, A. Boundary value problems for hybrid differential equations with fractional order. Adv. Differ. Equ. 2015, 2015, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K. Initial-value problems for hybrid Hadamard fractional differential equations. Electron. J. Differ. Equ. 2014, 2014, 1–8. [Google Scholar]
- Dhage, B.C. Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral equations. Differ. Equ. Appl. Ele-Math 2013, 5, 155–184. [Google Scholar] [CrossRef]
- Dhage, B.C.; Dhage, S.B.; Ntouyas, S.K. Approximating solutions of nonlinear hybrid differential equations. Appl. Math. Lett. 2014, 34, 76–80. [Google Scholar] [CrossRef]
- Zhang, S. The existence of a positive solution for a nonlinear fractional differential equation. J. Math. Anal. Appl. 2000, 252, 804–812. [Google Scholar] [CrossRef] [Green Version]
- Dhage, B.C.; Lakshmikantham, V. Basic results on hybrid differential equations. Nonlinear Anal. Hybrid Syst. 2010, 4, 414–424. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, S.; Han, Z.; Li, Q. Theory of fractional hybrid differential equations. Comput. Math. Appl. 2011, 62, 1312–1324. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Etemad, S.; Pourrazi, S.; Rezapour, S. On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv. Differ. Equ. 2019, 2019, 473. [Google Scholar] [CrossRef]
- Sitho, S.; Ntouyas, S.; Tariboon, J. Existence results for hybrid fractional integro-differential equations. Bound. Value Prob. 2015, 2015, 113. [Google Scholar] [CrossRef] [Green Version]
- Aldoghaither, A.; Liu, D.Y.; Laleg-Kirati, T.M. Modulating functions based algorithm for the estimation of the coefficients and differentiation order for a space-fractional advection-dispersion equation. SIAM J. Sci. Comput. 2015, 37, A2813–A2839. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Nakagawa, J.; Yamamoto, M.; Yamazaki, T. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Probl. 2009, 25, 115002. [Google Scholar] [CrossRef]
- Dhage, B.C. Fixed point theorems in ordered Banach algebras and applications. Panamer. Math. J. 1999, 9, 93–102. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.I.; Ragusa, M.A. On the Hybrid Fractional Differential Equations with Fractional Proportional Derivatives of a Function with Respect to a Certain Function. Symmetry 2021, 13, 264. https://doi.org/10.3390/sym13020264
Abbas MI, Ragusa MA. On the Hybrid Fractional Differential Equations with Fractional Proportional Derivatives of a Function with Respect to a Certain Function. Symmetry. 2021; 13(2):264. https://doi.org/10.3390/sym13020264
Chicago/Turabian StyleAbbas, Mohamed I., and Maria Alessandra Ragusa. 2021. "On the Hybrid Fractional Differential Equations with Fractional Proportional Derivatives of a Function with Respect to a Certain Function" Symmetry 13, no. 2: 264. https://doi.org/10.3390/sym13020264