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Abstract: In this paper, we discuss the existence of solutions for a hybrid boundary value
problem of Caputo fractional differential equations. The main tool used in our study is associated
with the technique of measures of noncompactness. As an application, we give an example to
illustrate our results.
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1. Introduction

The field of fractional calculus is concerned with the generalization of the integer order
differentiation and integration to an arbitrary real or complex order. It has played a significant
role in various branches of science such as physics, chemistry, chemical physics, electrical networks,
control of dynamic systems, science, engineering, biological science, optics and signal processing
(see, for example, [1–4]). Recent development on fractional differential and integral equations are
considered in some recent books [5–12]. There exist some papers on the boundary value problems of
fractional differential equations (see [13–19]).

Benchohra et al. [15] studied the existence and uniqueness of solutions of the following nonlinear
fractional differential equations:{

cDα
0+y(t) = f (t, y(t)), for each t ∈ J = [0, T], 0 < α < 1,

ay(0) + by(T) = c,
(1)

where cDα
0+ is the Caputo fractional derivative, f : [0, T]×R −→ R is continuous and a, b, c are real

constants with a + b 6= 0.
The area of differential equations devoted to quadratic perturbations of nonlinear differential

equations (called hybrid differential equations) has been considered more important and served as
special cases of dynamical systems. This class of equations involves the fractional derivative of an
unknown function hybrid with the nonlinearity depending on it. Some recent results on hybrid
differential equations can be found in a series of papers [20–31].
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Dhage and Lakshmikantham [23] discussed the existence and uniqueness theorems of the solution
to the ordinary first-order hybrid differential equation with perturbation of first type{

d
dt

(
x(t)

f (t,x(t))

)
= g(t, x(t)), a.e. t ∈ J,

x(t0) = x0 ∈ R.

where f ∈ C(J ×R,R \ {0}) and g ∈ C(J ×R,R), where J = [t0, t0 + a] is a bounded interval in R for
some t0 and a ∈ R with a > 0.

Zhao et al. [32] studied existence and uniqueness results for the following hybrid differential
equations involving Riemann–Liouville differential operators:{

Dq
0+

(
x(t)

f (t,x(t))

)
= g(t, x(t)), a.e. t ∈ J = [0, T],

x(0) = 0,

where 0 < q < 1, f ∈ C(J × R,R \ {0}) and g ∈ C(J × R,R). A fixed point theorem in Banach
algebras is the main tool used in this work.

Hilal and Kajouni [25] extended the results to the following boundary value problem for fractional
hybrid differential equations involving Caputo’s derivative:

cDα
0+

[
x(t)

f (t,x(t))

]
= g(t, x(t)), a.e. t ∈ J = [0, T],

a x(0)
f (0,x(0)) + b x(T)

f (T,x(T)) = c,
(2)

where 0 < α < 1, f ∈ C(J ×R,R \ {0}), g ∈ C(J ×R,R) and a, b, c are real constants with a + b 6= 0.
They proved the existence of the boundary fractional hybrid differential equations under mixed
Lipschitz and Carathéodory conditions. Some fundamental fractional differential inequalities are also
established, which are utilized to prove the existence of extremal solutions.

Motivated by some recent studies on hybrid fractional differential equations, we consider the
following boundary value problem of nonlinear fractional hybrid differential equations:

cDα
0+

[
x(t)

f (t,x(µ(t)))

]
= g(t, x(ν(t))), t ∈ I = [0, 1],

a
[

x(t)
f (t,x(µ(t)))

]
t=0

+ b
[

x(t)
f (t,x(µ(t)))

]
t=1

= c,

(3)

where 0 < α ≤ 1, a, b, c are real constants such that a + b 6= 0, CDα
0+ is the Caputo fractional derivative,

f ∈ C(I × R,R \ {0}), g ∈ C(I × R,R), µ and ν are functions from I into itself. Note that, if
µ(t) = ν(t) = t, then the first problem of Equation (3) is reduced to the problem in Equation
(2). In addition, if µ(t) = ν(t) = t, f (t, x(t)) = 1, then the problem in Equation (3) is reduced to the
problem in Equation (1).

The main tool of our study is a generalization of Darbo’s fixed point theorem for the product of
two operators associated to measures of noncompactness. We can use a numerical method to solve the
problem in Equation (3) (see [16]).

2. Preliminaries

First, we present the necessary definitions and lemmas from fractional calculus theory.

Definition 1 ([1]). Let α > 0, for a function u : [0, ∞) −→ R. The Riemann–Liouville fractional integral of
order α of u is defined by

Iα
0+u(t) =

1
Γ(α)

∫ t

0
(t− s)α−1u(s)ds,
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provided that the right-hand side is pointwise defined on (0, ∞).

Remark 1. The notation Iα
0+u(t) |t=0 means that the limit is taken at almost all points of the right-sided

neighborhood (0, ε)(ε > 0) of 0 as follows:

Iα
0+u(t) |t=0= lim

t→0+
Iα
0+u(t).

Generally, Iα
0+u(t) |t=0 is not necessarily zero. For instance, let α ∈ (0, 1), u(t) = t−α. Then,

Iα
0+ t−α|t=0 = lim

t→0+

1
Γ(α)

∫ t

0
(t− s)α−1s−αds = Γ(1− α).

Definition 2 ([1]). Let α > 0. The Caputo fractional derivative of order α of a function u : (0, ∞) −→ R is
given by

CDα
0+u(t) = In−α

0+ u(n)(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1u(n)(s)ds,

where n = [α] + 1, [α] denotes the integer part of real number α, provided that the right-hand side is pointwise
defined on (0, ∞).

Lemma 1 ([1]). Let α, β ≥ 0, and u ∈ L1([0, 1]). Then, Iα
0+ Iβ

0+u(t) = Iα+β
0+ u(t) and CDα

0+ Iα
0+u(t) = u(t),

for all t ∈ [0, 1]

Lemma 2 ([1]). Let α > 0, n = [α] + 1, then

Iα
0+

CDα
0+u(t) = u(t)−

n−1

∑
k=0

cktk, ck ∈ R.

In the sequel, we recall some definitions and basic facts about measures of noncompactness.
Assume that (E, ‖ · ‖) is a real Banach space with zero element 0. By B(x, r), we denote the

closed ball in E centered at x with the radius r. By Br, we denote the ball B(0, r). If X is non-empty
subset of E, then X and ConvX denote the closure and the closed convex closure of X, respectively.
When X is a bounded subset, diamX denotes the diameter of X and ‖X‖ the quantity given by
‖X‖ = sup{‖x‖ : x ∈ X}. Further, by ME, we denote the family of the nonempty and bounded
subsets of E and by NE its subfamily consisting of the relatively compact subsets.

We accept the following definition of measure of noncompactness.

Definition 3 ([33]). A mapping σ :ME −→ [0, ∞) is said to be a measure of noncompactness if it satisfies
the following conditions:

(1) The family Kerσ = {X ∈ ME; σ(X) = 0} is non-empty and Kerσ ∈ NE.
(2) X ⊂ Y ⇒ σ(X) ≤ σ(Y).
(3) σ(X) = σ(ConvX) = σ(X).
(4) σ(λX + (1− λ)Y) ≤ λσ(X) + (1− λ)σ(Y) for λ ∈ [0, 1].
(5) If (Xn) is a sequence of closed subsets ofME such that Xn+1 ⊂ Xn (n ≥ 1) and limn→∞ σ(Xn) = 0,

then
⋂∞

n=1 Xn 6= ∅.

An important theorem about fixed point theorem in the context of measures of noncompactness
is the following Darbo’s fixed point theorem.

Theorem 1 ([34]). Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E and let
T : Ω→ Ω be a continuous mapping. Suppose that there exists k ∈ [0, 1) such that

σ(T X) ≤ kσ(X),
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for any non-empty subset X of Ω, where σ is a measure of noncompactness in E. Then, T has a fixed point in Ω.

Now, we introduce the following class A of functions ϕ : (0, ∞) → (1, ∞) satisfying the
following condition:

For any sequence (tn) ⊂ (0, ∞),

lim
n→∞

ϕ(tn) = 1⇐⇒ lim
n→∞

tn = 0.

A generalization of Theorem 1, which is very useful for our study, is the following
theorem (see [35]).

Theorem 2. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E and let T : Ω→ Ω
be a continuous mapping. Suppose that there exist ϕ ∈ A and k ∈ [0, 1) such that, for any nonempty subset X
of Ω with σ(T X) > 0,

ϕ(σ(T X)) ≤ (ϕ(σ(X)))k,

for any non-empty subset X of Ω, where σ is a measure of noncompactness in E. Then, T has a fixed point in Ω.

Next, we assume that the space E has structure of Banach algebra. By xy, we denote the product
of two elements x, y ∈ X and by XY we denote the set defined by XY = {xy : x ∈ X, y ∈ Y}.

Definition 4. Let E be a Banach algebra. A measure of noncompactness σ in E is said to satisfy condition (m)

if it satisfies the following condition:

σ(XY) ≤ ‖X‖σ(Y) + ‖Y‖σ(X),

for any X, Y ∈ ME.

This definition appears in [36].
As is known, the family of all real valued and continuous functions defined on interval I is a

Banach space with the standard norm

‖x‖ = sup{|x(t)|, t ∈ I}.

Notice that (C(I), ‖ · ‖) is a Banach algebra, where the multiplication is defined as the usual
product of real functions.

In our considerations, we use a measure of noncompactness defined in [33]. To o recall the
definitions of that measure, let us fix a set X ∈ C(I). For x ∈ X and for a given ε > 0, denote by ω(x, ε)

the modulus of continuity of x, i.e.,

ω(x, ε) = sup{|x(t)− x(s)| : t, s ∈ I, |t− s| ≤ ε}.

Put
ω(X, ε) = sup{w(x, ε) : x ∈ X},

and
ω0(X) = lim

ε→0
ω(X, ε).

The authors of [33] showed that function ω0 is a measure of noncompactness in space C(I).

Lemma 3. The measure of noncompactness ω0 on C(I) satisfies condition (m).
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Proof. Let X, Y be a fixed subset ofMC(I), ε > 0 and t, s ∈ I with |t− s| ≤ ε. Then, for x ∈ X and
y ∈ Y, we have

|x(t)y(t)− x(s)y(s)| ≤ |x(t)y(t)− x(t)y(s)|+ |x(t)y(s)− x(s)y(s)|
≤ |x(t)||y(t)− y(s)|+ |y(s)||x(t)− x(s)|
≤ ‖x‖ω(y, ε) + ‖y‖ω(x, ε).

Thus,
ω(xy, ε) ≤ ‖x‖ω(y, ε) + ‖y‖ω(x, ε),

and
ω(XY, ε) ≤ ‖X‖ω(Y, ε) + ‖Y‖ω(X, ε).

Therefore, we get

ω0(XY) = lim
ε→0

ω(XY, ε) ≤ ‖X‖ω0(Y) + ‖Y‖ω0(X).

This completes the proof.

Lemma 4. For any y ∈ C(I), the unique solution of the hybrid fractional differential equation,

cDα
0+

[
x(t)

f (t, x(µ(t)))

]
= y(t), 0 < t < 1, (4)

with boundary conditions

a
[

x(t)
f (t, x(µ(t)))

]
t=0

+ b
[

x(t)
f (t, x(µ(t)))

]
t=1

= c, (5)

is given by

x(t) = f (t, x(µ(t)))
{∫ 1

0
G(t, s)y(s)ds +

c
a + b

}
, (6)

where

G(t, s) =
1

Γ(α)


(t− s)α−1 − b

a + b
(1− s)α−1 , 0 ≤ s < t ≤ 1,

− b
a + b

(1− s)α−1 , 0 ≤ t ≤ s < 1.
(7)

Here, G(t, s) is called the Green function of the boundary value problem in Equations (4) and (5).

Proof. We may apply Lemma 2 to reduce Equation (4) to an equivalent integral equation

x(t)
f (t, x(µ(t)))

= Iα
0+y(t) + c0, c0 ∈ R. (8)

Consequently, the general solution of Equation (4) is

x(t) = f (t, x(µ(t)))(Iα
0+y(t) + c0). (9)

Applying the boundary conditions in Equation (5) to Equation (8), we find that

ac0 + b(Iα
0+y(1) + c0) = c.

Therefore, we have

c0 =
1

a + b
(c− bIα

0+y(1)).
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Substituting the value of c0 into Equation (9), we get Equation (6).

x(t) = f (t, x(µ(t)))
{

Iα
0+y(t)− b

a + b
Iα
0+y(1) +

c
a + b

}
. (10)

that can be written as

x(t) = f (t, x(µ(t)))
{∫ 1

0
G(t, s)y(s)ds +

c
a + b

}
,

where G is defined by Equation (7). The proof is complete.

Remark 2. From the expression of G(t, s), the function G(t, s) is not continuous on I× I, however the function
t 7→

∫ 1
0 G(t, s)ds is continuous on I, so it is bounded.

Thanks to Lemma 4, the proposed problem is equivalent to the following integral equation

x(t) = f (t, x(µ(t)))
{∫ 1

0
G(t, s)g(s, x(ν(s)))ds +

c
a + b

}
.

3. Proof of Main Results

Firstly, we list some assumptions:

(H1) The functions µ, ν : I −→ I are continuous.
(H2) f ∈ C(I ×R, R \ {0}) and g ∈ C(I ×R,R).
(H3) There exists a constant k ∈ (0, 1) such that

| f (t, x1)− f (t, x2)| ≤ (|x1 − x2|+ 1)k − 1, t ∈ I, x1, x2 ∈ R.

(H4) There exists a continuous nondecreasing function ψ : R+ −→ (0,+∞) such that

|g(t, x)| ≤ ψ(|x|), t ∈ I, x ∈ R+.

(H5) There exists r > 0 such that

[(r + 1)k − 1 + M]

{
|a|+ 2|b|

|a + b|Γ(α + 1)
ψ(r) +

|c|
|a + b|

}
≤ r,

and
|a|+ 2|b|

|a + b|Γ(α + 1)
ψ(r) +

|c|
|a + b| ≤ 1,

where
M = sup{| f (t, 0, 0)| : t ∈ I}.

Now, we are in a position to state and prove our main result in this paper.

Theorem 3. Assume that Assumptions (H1)–(H5) hold. Then, the problem in Equation (3) has at least one
solution in the Banach algebra C(I).

Proof. To prove this result using Theorem 2, we consider the operator T on the Banach algebra C(I)
as follows

T x(t) = f (t, x(µ(t)))
{∫ 1

0
G(t, s)g(s, x(ν(s)))ds +

c
a + b

}
for t ∈ I. By virtue of Lemma 4, a fixed point of T gives us the desired result.

We define operators F and G on the Banach algebra C(I) in the following way:

Fx(t) = f (t, x(µ(t))),
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and

Gx(t) =
∫ 1

0
G(t, s)g(s, x(ν(s)))ds +

c
a + b

for t ∈ I. Then, T x = (Fx).(Gx) for any x ∈ C(I).
We divide the proof into five steps.

Step 1: T transforms C(I) into itself.
In fact, since the product of continuous functions is a continuous function, it is sufficient to prove that
Fx,Gx ∈ C(I) for any x ∈ C(I). Now, from Assumptions (H1) and (H2), it follows that if x ∈ C(I)
then Fx ∈ C(I). Next, we prove that if x ∈ C(I) then Gx ∈ C(I). To do this, let ε > 0 be fixed; take
x ∈ C(I) and t1, t2 ∈ I with t2 − t1 ≤ ε; and assume that t1 ≤ t2. Then, in view of Assumption (H4),
we get

|Gx(t2)− Gx(t1)| ≤
∫ t1

0
|G(t1, s)− G(t2, s)||g(s, x(ν(s)))|ds

+
∫ t2

t1

|G(t1, s)− G(t2, s)||g(s, x(ν(s)))|ds

+
∫ 1

t2

|G(t1, s)− G(t2, s)||g(s, x(ν(s)))|ds

≤ ψ(‖x‖)
( ∫ t1

0 |G(t1, s)− G(t2, s)|ds

+
∫ t2

t1

|G(t1, s)− G(t2, s)|ds +
∫ 1

t2

|G(t1, s)− G(t2, s)|ds
)

≤ ψ(‖x‖)
Γ(α + 1)

(
2(t2 − t1)

α + (tα
1 − tα

2)
)

≤ 2ψ(‖x‖)
Γ(α + 1)

(t2 − t1)
α

≤ 2ψ(‖x‖)
Γ(α + 1)

εα.

From the above inequality, we conclude that |Gx(t2) − Gx(t1)| → 0 when ε → 0. Therefore,
Gx ∈ C(I). This proves that if x ∈ C(I) then T x ∈ C(I).

Step 2: An estimate of ‖T x‖ for x ∈ C(I).
Now, let us fix x ∈ C(I), then using our assumptions for t ∈ I, we obtain

|(T x)(t)| =

∣∣∣∣ f (t, x(µ(t)))
{

Iα
0+ g(t, x(ν(t)))− b

a + b
Iα
0+ g(1, x(ν(1))) +

c
a + b

}∣∣∣∣
≤ (| f (t, x(µ(t)))− f (t, 0)|+ | f (t, 0)|)

×
{

1
Γ(α)

∫ t

0

|g(s, x(ν(s)))|
(t− s)1−α

ds +
|b|

|a + b|Γ(α)

∫ 1

0

|g(s, x(ν(s)))|
(1− s)1−α

ds +
|c|
|a + b|

}
≤ [(|x(µ(t))|+ 1)k − 1 + M]

×
{

1
Γ(α)

∫ t

0

ψ(|x(ν(s)|)
(t− s)1−α

ds +
|b|

|a + b|Γ(α)

∫ 1

0

ψ(|x(ν(s)|)
(1− s)1−α

ds +
|c|
|a + b|

}
≤

[
(‖x‖+ 1)k − 1 + M

] { |a|+ 2|b|
|a + b|Γ(α + 1)

ψ(‖x‖) + |c|
|a + b|

}
.

Therefore,

‖T x‖ ≤
[
(‖x‖+ 1)k − 1 + M

] { |a|+ 2|b|
|a + b|Γ(α + 1)

ψ(‖x‖) + |c|
|a + b|

}
.

By Assumption (H5), we deduce that the operator T maps the ball Br ⊂ C(I) into itself. Moreover,
let us observe that, from the last estimates, we obtain{

‖FBr‖ ≤ (r + 1)k − 1 + M,
‖GBr‖ ≤ |a|+2|b|

|a+b|Γ(α+1)ψ(r) + |c|
|a+b| .

(11)
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Step 3: The operators F and G are continuous on the ball Br.
In fact, firstly we prove that the operator F is continuous on the ball Br. To do this, fix ε > 0 and take
arbitrary x, y ∈ Br such that ‖x− y‖ ≤ ε. Then, for t ∈ I, we have

|(Fx)(t)− (Fy)(t)| = | f (t, x(µ(t)))− f (t, y(µ(t)))|
≤ (|x(µ(t))− y(µ(t))|+ 1)k − 1
≤ (‖x− y‖+ 1)k − 1
≤ (ε + 1)k − 1,

and, since (ε + 1)k − 1→ 0 when ε→ 0, from the above inequality, the operator F is continuous on
the ball Br.

Next, we prove that the operator G is continuous on the ball Br. To do this, we take a sequence
{xn} ⊂ Br and x ∈ Br such that ‖xn − x‖ → 0 as n→ ∞, and we have to prove that ‖Gxn − Gx‖ → 0
as n→ ∞. Since g(t, x) is uniformly continuous on the compact I × [−r, r], we may denote

H = sup{|g(t, x)| : t ∈ I, x ∈ [−r, r]}.

Since µ : I → I is continuous, then for any n and t ∈ I, we have |xn(ν(t))| ≤ r. Thus, for any n and
t ∈ I, we get

|G(t, s)||g(t, xn(ν(t)))| ≤ H|G(t, s)|, (t, s) ∈ I × I.

By applying Lebesgue dominated convergence theorem, we get

lim
n→∞

(Gxn)(t) = lim
n→∞

∫ 1

0
G(t, s)g(s, xn(ν(t)))ds +

c
a + b

=
∫ 1

0
G(t, s)g(s, x(ν(s)))ds +

c
a + b

= (Gx)(t).

Thus, the above inequality shows that the operator G is continuous in Br. Hence, we conclude
that T is continuous operator on Br.

Step 4: We estimate ω0(FX) and ω0(GX) for ∅ 6= X ⊂ Br.
Firstly, we estimate ω0(FX). Let ε > 0 be fixed; since µ : I → I is uniformly continuous, we can
find δ > 0 (which can be taken with δ < ε ) such that, for |t1 − t2| < δ, we have |µ(t1)− µ(t2)| < ε.
Let x ∈ X and t1, t2 ∈ I with |t1 − t2| ≤ δ < ε. Then, in view of Assumption (H3), we have

|(Fx)(t1)− (Fx)(t1)| = | f (t1, x(µ(t1)))− f (t2, x(µ(t2)))|
≤ | f (t1, x(µ(t1)))− f (t1, x(µ(t2)))|+ | f (t1, x(µ(t2)))− f (t2, x(µ(t2)))|
≤

[
(|x(µ(t1))− x(µ(t2))|+ 1)k − 1

]
+ ω( f , ε)

≤
[
(ω(X, ε) + 1)k − 1

]
+ ω( f , ε),

where
ω( f , ε) = sup {| f (t1, x)− f (t2, x)| : t1, t2 ∈ I, |t1 − t2| ≤ ε, x ∈ [−r, r]} .

Thus,
ω(FX, ε) ≤

[
(ω(X, ε) + 1)k − 1

]
+ ω( f , ε).

Observe that the function f (t, x) is uniformly continuous on the set I × [−r, r]. Hence, we deduce
that ω( f , ε)→ 0 as ε→ 0. Thus, from the above inequality, we conclude

ω0(FX) ≤ (ω0(X) + 1)k − 1. (12)
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Next, we estimate ω0(GX). Fix ε > 0; since
∫ 1

0 G(t, s)ds is uniformly continuous on I, there exists
δ > 0 (which can be taken with δ < ε ) such that, for any t1, t2 ∈ I with |t2 − t1| ≤ δ < ε,

∫ 1

0
|G(t1, s)− G(t2, s)|ds ≤ ε

H
.

Thus,

|Gx(t2)− Gx(t1)| =
∫ 1

0
|G(t1, s)− G(t2, s)||g(s, x(ν(s)))|ds

≤ H
∫ 1

0
|G(t1, s)− G(t2, s)|ds < ε.

Thus,
ω(Gx, ε) ≤ ε.

Taking ε→ 0, we get
ω0(GX) = 0. (13)

Step 5: We estimate ω0(T X) for ∅ 6= X ⊂ Br.
From Lemma 3 and the estimates in Equations (11)–(13), we have

ω0(T X) = ω0(FX.GX) ≤ ‖FX‖ω0(GX) + ‖GX‖ω0(FX)

≤ ‖FBr0‖ω0(GX) + ‖GBr0‖ω0(FX)

≤
[
(ω0(X) + 1)k − 1

] [ |a|+ 2|b|
|a + b|Γ(α + 1)

ψ(r0) +
|c|
|a + b|

]
.

By Assumption (H5), we know that

|a|+ 2|b|
|a + b|Γ(α + 1)

ψ(r0) +
|c|
|a + b| ≤ 1.

Hence,
ω0(T X) + 1 ≤ (ω0(X) + 1)k.

Thus, the contractive condition appearing in Theorem 1 is satisfied with ϕ(t) = t + 1, where
ϕ ∈ A. By applying Theorem 2, we get that the operator T has at least one fixed point in the ball Br.
Consequently, the problem in Equation (3) has at least one solution in Br. This completes the proof.

4. An Example

Consider the following fractional hybrid problem

CD
1
2
0+

[
x(t)√

1+|x(et−1)|

]
= 1

3 sin x(
√

t), t ∈ I = [0, 1],

[
x(t)√

1+|x(et−1)|

]
t=0

+

[
x(t)√

1+|x(et−1)|

]
t=1

= 0.

(14)

Corresponding to the problem in Equation (3), we have that f (t, x) =
√

1 + |x|, |g(t, x)| =
1
3 sin x, µ(t) = et−1, ν(t) =

√
t, α = 1

2 , a = b = 1, c = 0, M = supt∈I | f (t, 0, 0)| = 1. It is clear that
Assumptions (H1)–(H2) hold.



Mathematics 2019, 7, 282 10 of 11

On the other hand, since the function β(x) =
√

1 + |x| − 1 is concave (because β′′(x) ≤ 0) and
β(0) = 0, we infer that β is subadditive and, therefore, for any t ∈ I and x1, x2 ∈ R, we have

| f (t, x1)− f (t, x2)| = |β(x1)− β(x2)| ≤ β(x1 − x2)

=
√

1 + |x1 − x2| − 1.

Thus, Assumption (H3) holds, with k = 1/2.
Moreover, for any t ∈ I and x ∈ R, we have

|g(t, x)| = 1
3
| sin x| ≤ 1

3
|x|.

Hence, Assumption (H4) holds, where ψ(x) = 1
3 x.

Observe that Assumption (H5) is equivalent to

√
r + 1√

π
≤ 1 and

r√
π
≤ 1,

Thus, Assumption (H5)is satisfied for all 0 < r ≤
√

π.
Thus, all assumptions of Theorem 3 are satisfied, and consequently the problem in Equation (14)

has at least one solution in C(I).
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