Multiscale Discrete Element Modeling
Abstract
1. Introduction
2. Materials and Methods
- Starting from macro-element deformation, we calculate the DE deformation tensor:where are initial position vectors of element vertexes and are current position vectors of vertexes.
- Assuming that the atomic sample associated with the element undergoes the same deformation as the element, we get the strain tensor for AS:
- Having the deformation tensor, we can calculate new atom positions in the global coordinate system:where is the matrix of AS basis vectors so that the AS is a parallelepiped generated by these vectors, is the lattice rotation matrix, is the matrix of atomic positions in local fractional coordinates, and N is the number of atoms in AS. The obtained positions are used on the next step as initial conditions.
- Atomic dynamics is simulated solving the system of ordinary differential Equations (1)–(2) with numerical method (3). The system can be written in a matrix form:where is the diagonal matrix of atomic masses, is the matrix of atomic velocities, and is the potential energy function.
- After the steady state is reached in the process of atomic dynamics simulation, we calculate the stress tensor of AS:Here, is the AS volume and is the average atom velocity.
- Assuming that the stress tensors of AS and DE are equal, we get the stress tensor for the element
- Having the stress tensor , we can calculate the forces acting on every vertex of the DE. Consider one face of the DE. The force acting on the k-th vertex (k = 1,2,3) of the m-th face of element l is calculated using the force acting on the face :where is the normal to face m of element l, is the face area, and is the part of face area attributed to vertex . Similarly, we assign masses to vertices. We divide the element’s volume into four parts and distribute the element’s mass between the vertexes according to the corresponding volumes. Summation over all elements adjacent to the vertex gives the net force and effective mass of the vertex.
- After forces acting on vertexes and vertex masses are determined, we calculate new vertex positions using the system of differential Equations (1)–(2) for vertex dynamics and numerical method (3).
- Getting new vertex positions, we turn to step 1, and the computational process continues.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tadmor, E.B.; Miller, R.E. Modeling Materials. Continuum, Atomistic and Multiscale Techniques; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Abgaryan, K.K. Mnogomashtabnoe Modelirovanie v Zadachah Strukturnogo Materialovedeniya [Multiscale Modeling in Material Science Problems]; MAKS Press: Moscow, Russia, 2017. (In Russian) [Google Scholar]
- Steinhauser, M.O. Computational Multiscale Modeling of Fluids and Solids: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Li, Y.; Abberton, B.C.; Kröger, M.; Liu, W.K. Challenges in multiscale modeling of polymer dynamics. Polymers 2013, 5, 751–832. [Google Scholar] [CrossRef]
- Abgaryan, K.K.; Eliseev, S.V.; Zhuravlev, A.A.; Reviznikov, D.L. High-speed penetration. Discrete-element simulation and experiments. Comput. Res. Model. 2017, 9, 937–944. [Google Scholar] [CrossRef][Green Version]
- Steinhauser, M.O.; Watson, E. Discrete Particle Methods for Simulating Quasi-Static Load and Hypervelocity Impact Phenomena. Int. J. Comput. Methods 2019, 16, 1740009. [Google Scholar] [CrossRef]
- Tan, Y.; Yang, D.; Sheng, Y. Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC. J. Eur. Ceram. Soc. 2009, 29, 1029–1037. [Google Scholar] [CrossRef]
- Kempfer, K.; Devémy, J.; Dequidt, A.; Couty, M.; Malfreyt, P. Development of Coarse-Grained Models for Polymers by Trajectory Matching. ACS Omega 2019, 4, 5955–5967. [Google Scholar] [CrossRef]
- Noid, W.G.; Chu, J.W.; Ayton, G.S.; Krishna, V.; Izvekov, S.; Voth, G.A. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 2008, 128, 244114. [Google Scholar] [CrossRef]
- Izvekov, S.; Voth, G.A. A multiscale coarse-graining method for biomolecular systems. J. Phys. Chem. B 2005, 109, 2469–2473. [Google Scholar]
- Larini, L.; Lu, L.; Voth, G.A. The multiscale coarse-graining method. VI: Implementation of three-body coarse-grained potentials. J. Chem. Phys. 2010, 132, 164107. [Google Scholar] [CrossRef]
- Xiong, L.; Chen, Y. Coarse-grained simulations of single-crystal silicon. Model. Simul. Mater. Sci. Eng. 2009, 17, 035002:1–035002:17. [Google Scholar] [CrossRef]
- Xiong, L.; Chen, Y. Multiscale modeling and simulation of single-crystal MgO through an atomistic field theory. Int. J. Solids Struct. 2009, 46, 1448–1455. [Google Scholar]
- Chen, Y.; Zimmerman, J.; Krivtsov, A.; McDowell, D.L. Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci. 2011, 49, 1337–1349. [Google Scholar] [CrossRef]
- Argilaga, A.; Desrues, J.; Dal Pont, S.; Combe, G.; Caillerie, D. FEM×DEM multiscale modeling: Model performance enhancement from Newton strategy to element loop parallelization. Int. J. Numer. Methods Eng. 2018, 114, 47–65. [Google Scholar] [CrossRef]
- Ferretti, E. DECM: A Discrete Element for Multiscale Modelingof Composite Materials Using the Cell Method. Materials 2020, 13, 880. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, E. Multiscale Modeling of Composite Materials with DECM Approach: Shape Effect of Inclusions. Int. J. Mech. 2019, 13, 114–128. [Google Scholar]
- Groot, R.D.; Warren, P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423–4435. [Google Scholar]
- Moeendarbary, E.; Ng, T.Y.; Zangeneh, M. Dissipative particle dynamics: Introduction, methodology and complex fluidapplications—A review. Int. J. Appl. Mech. 2009, 1, 737–763. [Google Scholar] [CrossRef]
- Leclerc, W. Discrete element method to simulate the elastic behavior of 3D heterogeneous continuous media. Int. J. Solids Struct. 2017, 121, 86–102. [Google Scholar] [CrossRef]
- Leclerc, W.; Haddad, H.; Guessasma, M. On the suitability of a Discrete Element Method to simulate cracks initiation and propagation in heterogeneous media. Int. J. Solids Struct. 2017, 108, 98–114. [Google Scholar] [CrossRef]
- Psakhie, S.; Shilko, E.; Smolin, A.; Astafurov, S.; Ovcharenko, V. Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials. Frat. Integrita Strutt. 2013, 24, 26–59. [Google Scholar] [CrossRef]
- Zhuravlev, A.A.; Abgaryan, K.K.; Reviznikov, D.L. Discrete element method adopting microstructure information. In Advances in Theory and Practice of Computational Mechanics: Proceedings of the 21st International Conference on Computational Mechanics and Modern Applied Software Systems; Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L., Eds.; Smart Innovation, Systems and Technologies; Springer: Singapore, 2020; Volume 173, pp. 225–237. [Google Scholar]
- Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991–7000. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, T.; Izumi, S.; Hara, S.; Sakai, S. Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation. Comput. Mater. Sci. 2007, 39, 457–464. [Google Scholar] [CrossRef]
- Abgaryan, K.K.; Posypkin, M.A. Optimization methods as applied to parametric identification of interatomic potentials. Comput. Math. Math. Phys. 2014, 54, 1929–1935. [Google Scholar] [CrossRef]
- Abgaryan, K.K.; Grevtsev, A.V. Parametric Identification of Tersoff Potential for Two-Component Materials. In Advances in Theory and Practice of Computational Mechanics: Proceedings of the 21st International Conference on Computational Mechanics and Modern Applied Software Systems; Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L., Eds.; Smart Innovation, Systems and Technologies; Springer: Singapore, 2020; Volume 173, pp. 257–268. [Google Scholar]
- Bartholomew-Biggs, M.; Brown, S.; Christianson, B.; Dixon, L. Automatic differentiation of algorithms. J. Comput. Appl. Math. 2000, 124, 171–190. [Google Scholar] [CrossRef]
- Powell, D. Elasticity, Lattice Dynamics and Parameterisation Techniques for the Tersoff Potential Applied to Elemental and Type III-V Semiconductors. Diploma Thesis, The University of Sheffield, Sheffield, UK, October 2006. [Google Scholar]
- Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s Modulus of Silicon? J. Microelectromech. Syst. 2010, 19, 229–238. [Google Scholar] [CrossRef]







| Experimental (Ab Initio) Values | Calculated Properties | |
|---|---|---|
| Ec [eV] | −4.63 | −4.63 |
| B [GPa] | 99 | 97 |
| C’ [GPa] | 51 | 51 |
| C11 [GPa] | 167 | 166 |
| C12 [GPa] | 65 | 63 |
| C440 [GPa] | 106 | 113 |
| C44 [GPa] | 81 | 78 |
| Parameter | Value |
|---|---|
| A | 3821.34 |
| B | 113.17 |
| λ1 | 3.36252 |
| λ2 | 1.27279 |
| λ3 | 1.19417 |
| β | 0.132272 |
| n | 4.16334 |
| γ | 5.71477 |
| c | 9.69902 |
| d | 2.35646 |
| cos(θ0) | −0.40882 |
| R | 2.85 |
| D | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuravlev, A.A.; Abgaryan, K.K.; Reviznikov, D.L. Multiscale Discrete Element Modeling. Symmetry 2021, 13, 219. https://doi.org/10.3390/sym13020219
Zhuravlev AA, Abgaryan KK, Reviznikov DL. Multiscale Discrete Element Modeling. Symmetry. 2021; 13(2):219. https://doi.org/10.3390/sym13020219
Chicago/Turabian StyleZhuravlev, Andrew A., Karine K. Abgaryan, and Dmitry L. Reviznikov. 2021. "Multiscale Discrete Element Modeling" Symmetry 13, no. 2: 219. https://doi.org/10.3390/sym13020219
APA StyleZhuravlev, A. A., Abgaryan, K. K., & Reviznikov, D. L. (2021). Multiscale Discrete Element Modeling. Symmetry, 13(2), 219. https://doi.org/10.3390/sym13020219
