Oscillation Results for Nonlinear Higher-Order Differential Equations with Delay Term
Abstract
:1. Introduction
2. Main Results
- (I)
- there exists a such that the functions are of constant sign on
- (II)
- there exists a number when r is even, when r is odd, such that, for ,for all and
3. Applications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bazighifan, O.; Alotaibi, H.; Mousa, A.A.A. Neutral Delay Differential Equations: Oscillation Conditions for the Solutions. Symmetry 2021, 13, 101. [Google Scholar] [CrossRef]
- Santra, S.S.; Nofal, T.A.; Alotaibi, H.; Bazighifan, O. Oscillation of Emden–Fowler-Type Neutral Delay Differential Equations. Axioms 2020, 9, 136. [Google Scholar] [CrossRef]
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Lin, Q.; Zhuang, R. Oscillation for Certain Nonlinear Neutral Partial Differential Equations. Int. J. Differ. Equ. 2010, 2010, 619142. [Google Scholar] [CrossRef] [Green Version]
- Li, W.N.; Cui, B.T. Oscillation of solutions of neutral partial functional-differential equations. J. Math. Anal. Appl. 1999, 234, 123–146. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Lu, Y.; Meng, F. Oscillation Properties for Second-Order Partial Differential Equations with Damping and Functional Arguments. Abstr. Appl. Anal. 2011, 2011, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Meng, F.W.; Li, W.N. Oscillationofsolutionsof systems of neutral type partial functional differential equations. Comput. Math. Appl. 2002, 44, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. Math. Slovaca 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Bazighifan, O.; Cesarano, C. Some new oscillation criteria for second-order neutral differential equations with delayed arguments. Mathematics 2019, 7, 619. [Google Scholar] [CrossRef] [Green Version]
- Cesarano, C.; Bazighifan, O. Oscillation of fourth-order functional differential equations with distributed delay. Axioms 2019, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- Cesarano, C.; Bazighifan, O. Qualitative behavior of solutions of second order differential equations. Symmetry 2019, 11, 777. [Google Scholar] [CrossRef] [Green Version]
- Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic properties of solutions of fourth-order delay differential equations. Symmetry 2019, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Baculikova, B.; Dzurina, J.; Zhang, C. Oscillation of fourth order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 2014, 56, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Difference Equ. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Elabbasy, E.M.; Thandapani, E.; Moaaz, O.; Bazighifan, O. Oscillation of solutions to fourth-order delay differential equations with middle term. Open J. Math. Sci. 2019, 3, 191–197. [Google Scholar] [CrossRef]
- Bazighifan, O.; Abdeljawad, T.; Al-Mdallal, Q.M. Differential equations of even-order with p-Laplacian like operators: Qualitative properties of the solutions. Adv. Differ. Equ. 2021, 2021, 96. [Google Scholar] [CrossRef]
- Bazighifan, O.; Abdeljawad, T. Improved Approach for Studying Oscillatory Properties of Fourth-Order Advanced Differential Equations with p-Laplacian Like Operator. Mathematics 2020, 8, 656. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.; Li, T. Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators. J. Math. Anal. Appl. 2014, 409, 1093–1106. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ramos, H. On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term. Appl. Math. Lett. 2020, 107, 106431. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Yu, Y. Oscillation of even-order half-linear functional differential equations with damping. Comput. Math. Appl. 2011, 61, 2191–2196. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.; Agarwal, R.P.; Graef, J. Oscillation theorems for fourth order functional differential equations. J. Appl. Math. Comput. 2009, 30, 75–88. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef] [Green Version]
- Kiguradze, I.; Chanturia, T. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Agarwal, R.P.; Bazighifan, O.; Ragusa, M.A. Nonlinear Neutral Delay Differential Equations of Fourth-Order: Oscillation of Solutions. Entropy 2021, 23, 129. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.P.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Oscillation of second-order differential equations with a sublinear neutral term. Carpathian J. Math. 2014, 30, 1–6. [Google Scholar]
- Ottesen, J.T. Modelling of the Baroreflex-Feedback Mechanism with Time-Delay. J. Math. Biol. 1997, 36, 41–63. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Oscillation and Stability of Delay Models in Biology; Springer International Publishing: New York, NY, USA, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, A.; Bazighifan, O.; Raffoul, Y.N. Oscillation Results for Nonlinear Higher-Order Differential Equations with Delay Term. Symmetry 2021, 13, 446. https://doi.org/10.3390/sym13030446
Almutairi A, Bazighifan O, Raffoul YN. Oscillation Results for Nonlinear Higher-Order Differential Equations with Delay Term. Symmetry. 2021; 13(3):446. https://doi.org/10.3390/sym13030446
Chicago/Turabian StyleAlmutairi, Alanoud, Omar Bazighifan, and Youssef N. Raffoul. 2021. "Oscillation Results for Nonlinear Higher-Order Differential Equations with Delay Term" Symmetry 13, no. 3: 446. https://doi.org/10.3390/sym13030446