Left-Invariant Riemann Solitons of Three-Dimensional Lorentzian Lie Groups
Abstract
:1. Introduction
2. Left-Invariant Riemann Solitons of Three-Dimensional Lorentzian Lie Groups
- (i)
- , , , , ,
- (ii)
- , ,
- (iii)
- , , , , ,
- (iv)
- , , , , .
- (i)
- , , , , ,
- (ii)
- , , , .
- (i)
- , , , , , ,
- (ii)
- , , , , .
- (i)
- , , , , , ,
- (ii)
- , , , , , , ,
- (iii)
- , , , , , ,
- (iv)
- , , , , , , , , ,
- (v)
- , , , , , .
- (i)
- , , , ,
- (ii)
- , , , , , , ,
- (iii)
- , , , .
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirica, I.; Udriste, C. Ricci and Riemann Solitons. Balkan J. Geom. Appl. 2016, 21, 35–44. [Google Scholar]
- Blaga, A.; Latcu, D. Remarks on Riemann and Ricci solitons in (α,β)-contact metric manifolds. arXiv 2021, arXiv:2009.02506. [Google Scholar]
- Carfora, M. The Wasserstein geometry of nonlinear models and the Hamilton-Perelman Ricci flow. Rev. Math. Phys. 2017, 29, 1750001. [Google Scholar] [CrossRef]
- Nitta, M. Conformal sigma models with anomalous dimensions and Ricci solitons. Mod. Phys. Lett. A 2005, 20, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Oliynyk, T.; Suneeta, V.; Woolgar, E. A gradient flow for worldsheet nonlinear sigma models. Nucl. Phys. B 2006, 739, 441–458. [Google Scholar] [CrossRef] [Green Version]
- Tseytlin, A. Sigma model renormalization group flow, central charge action, and Perelman’s entropy. Phys. Rev. D 2007, 75, 064024. [Google Scholar] [CrossRef] [Green Version]
- Bakas, I.; Bourliot, F.; Lust, D.; Petropoulos, J. Geometric flows in Horava-Lifshitz gravity. J. High Energy Phys. 2010, 4, 131. [Google Scholar] [CrossRef] [Green Version]
- Streets, J. Ricci Yang-Mills flow on surfaces. Adv. Math. 2010, 223, 454–475. [Google Scholar] [CrossRef] [Green Version]
- Vacaru, S. Nonholonomic Ricci flows. II. Evolution equations and dynamics. J. Math. Phys. 2008, 49, 043504. [Google Scholar] [CrossRef] [Green Version]
- Vacaru, S. Spectral functionals, nonholonomic Dirac operators, and noncommutative Ricci flows. J. Math. Phys. 2009, 50, 073503. [Google Scholar] [CrossRef] [Green Version]
- Carfora, M. Ricci-flow-conjugated initial data sets for Einstein equations. Adv. Theor. Math. Phys. 2011, 15, 1411–1484. [Google Scholar] [CrossRef] [Green Version]
- Carstea, S.; Visinescu, M. Special solutions for Ricci flow equation in 2D using the linearization approach. Mod. Phys. Lett. A 2005, 20, 2993–3002. [Google Scholar] [CrossRef] [Green Version]
- Gheorghiu, T.; Ruchin, V.; Vacaru, O.; Vacaru, S. Geometric flows and Perelman’s thermodynamics for black ellipsoids in R2 and Einstein gravity theories. Ann. Phys. 2016, 369, 1–35. [Google Scholar]
- Ruchin, V.; Vacaru, O.; Vacaru, S. On relativistic generalization of Perelman’s W-entropy and thermodynamic description of gravitational fields and cosmology. Eur. Phys. J. C 2017, 77, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Vacaru, S. Finsler and Lagrange geometries in Einstein and string gravity. Int. J. Geom. Methods Mod. Phys. 2008, 5, 473–511. [Google Scholar] [CrossRef] [Green Version]
- Calvaruso, G. Three-dimensional homogeneous generalized Ricci solitons. Mediterr. J. Math. 2017, 14, 216. [Google Scholar] [CrossRef] [Green Version]
- Batat, W.; Onda, K. Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups. J. Geom. Phys. 2017, 114, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Calvaruso, G. Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds. Geom. Dedicata 2007, 127, 99–119. [Google Scholar] [CrossRef]
- Wang, Y. Affine Ricci solitons of three-dimensional Lorentzian Lie groups. arXiv 2020, arXiv:2012.11421. [Google Scholar]
- Calvaruso, G. Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 2007, 57, 1279–1291. [Google Scholar]
- Cordero, L.A.; Parker, P.E. Left-invariant Lorentzian metrics on 3-dimensional Lie groups. Rend. Mat. Appl. 1997, 17, 129–155. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y. Left-Invariant Riemann Solitons of Three-Dimensional Lorentzian Lie Groups. Symmetry 2021, 13, 218. https://doi.org/10.3390/sym13020218
Wang Y. Left-Invariant Riemann Solitons of Three-Dimensional Lorentzian Lie Groups. Symmetry. 2021; 13(2):218. https://doi.org/10.3390/sym13020218
Chicago/Turabian StyleWang, Yong. 2021. "Left-Invariant Riemann Solitons of Three-Dimensional Lorentzian Lie Groups" Symmetry 13, no. 2: 218. https://doi.org/10.3390/sym13020218
APA StyleWang, Y. (2021). Left-Invariant Riemann Solitons of Three-Dimensional Lorentzian Lie Groups. Symmetry, 13(2), 218. https://doi.org/10.3390/sym13020218