Semi-Hyers–Ulam–Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ulam, S.M. A Collection of Mathematical Problems; Interscience: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Obloza, M. Hyers stability of the linear differential equation. Rocznik Nauk-Dydakt. Prace Mat. 1993, 13, 259–270. [Google Scholar]
- Alsina, C.; Ger, R. On some inequalities and stability results related to exponential function. J. Inequal. Appl. 1998, 2, 373–380. [Google Scholar] [CrossRef]
- Takahasi, S.E.; Takagi, H.; Miura, T.; Miyajima, S. The Hyers-Ulam stability constant of first order linear differential operators. J. Math. Anal. Appl. 2004, 296, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order, III. J. Math. Anal. Appl. 2005, 311, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Cimpean, D.S.; Popa, D. On the stability of the linear differential equation of higher order with constant coefficients. Appl. Math. Comput. 2010, 217, 4141–4146. [Google Scholar] [CrossRef]
- Popa, D.; Rasa, I. Hyers-Ulam stability of the linear differential operator with non-constant coefficients. Appl. Math. Comput. 2012, 219, 1562–1568. [Google Scholar]
- Otrocol, D. Ulam stabilities of differential equation with abstract Volterra operator in a Banach space. Nonlinear Funct. Anal. Appl. 2010, 15, 613–619. [Google Scholar]
- Novac, A.; Otrocol, D.; Popa, D. Ulam stability of a linear difference equation in locally convex spaces. Results Math. 2021, 76, 1–13. [Google Scholar] [CrossRef]
- Cadariu, L. The generalized Hyers-Ulam stability for a class of the Volterra nonlinear integral equations. Sci. Bull. Politehnica Univ. Timis. Trans. Math. Phys. 2011, 56, 30–38. [Google Scholar]
- Ilea, V.; Otrocol, D. Existence and Uniqueness of the Solution for an Integral Equation with Supremum, via w-Distances. Symmetry 2020, 12, 1554. [Google Scholar] [CrossRef]
- Oliveira, E.C.; Sousa, J. Ulam–Hyers–Rassias Stability for a Class of Fractional Integro-Differential Equations. Results Math. 2018, 73, 111. [Google Scholar] [CrossRef] [Green Version]
- Marian, D.; Ciplea, S.A.; Lungu, N. On a functional integral equation. Symmetry 2021, 13, 1321. [Google Scholar] [CrossRef]
- Prastaro, A.; Rassias, T.M. Ulam stability in geometry of PDE’s. Nonlinear Funct. Anal. Appl. 2003, 8, 259–278. [Google Scholar]
- Jung, S.-M. Hyers-Ulam stability of linear partial differential equations of first order. Appl. Math. Lett. 2009, 22, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M.; Lee, K.-S. Hyers-Ulam stability of first order linear partial differential equations with constant coefficients. Math. Inequal. Appl. 2007, 10, 261–266. [Google Scholar] [CrossRef]
- Lungu, N.; Ciplea, S. Ulam-Hyers-Rassias stability of pseudoparabolic partial differential equations. Carpatian J. Math. 2015, 31, 233–240. [Google Scholar] [CrossRef]
- Lungu, N.; Marian, D. Ulam-Hyers-Rassias stability of some quasilinear partial differential equations of first order. Carpathian J. Math. 2019, 35, 165–170. [Google Scholar] [CrossRef]
- Lungu, N.; Popa, D. Hyers-Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 2012, 385, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Marian, D.; Ciplea, S.A.; Lungu, N. Ulam-Hyers stability of Darboux-Ionescu problem. Carpatian J. Math. 2021, 37, 211–216. [Google Scholar] [CrossRef]
- Brzdek, J.; Popa, D.; Rasa, I.; Xu, B. Ulam Stability of Operators; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Rezaei, H.; Jung, S.-M.; Rassias, T. Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl. 2013, 403, 244–251. [Google Scholar] [CrossRef]
- Alqifiary, Q.; Jung, S.-M. Laplace transform and generalized Hyers-Ulam stability of linear differential equations. Electron. J. Differ. Equ. 2014, 2014, 1–11. [Google Scholar]
- Murali, R.; Ponmana Selvan, A. Mittag–Leffler-Hyers-Ulam stability of a linear differential equation of first order using Laplace transforms. Can. J. Appl. Math. 2020, 2, 47–59. [Google Scholar]
- Shen, Y.; Chen, W. Laplace Transform Method for the Ulam Stability of Linear Fractional Differential Equations with Constant Coefficients. Mediterr. J. Math. 2017, 14, 1–17. [Google Scholar] [CrossRef]
- Biçer, E.; Tunç, C. On the Hyers-Ulam Stability of Laguerre and Bessel Equations by Laplace Transform Method. Nonlinear Dyn. Syst. 2017, 17, 340–346. [Google Scholar]
- Shen, Y.; Li, Y. The z-transform method for the Ulam stability of linear difference equations with constant coefficients. Adv. Differ. Equ. 2018, 396, 1–16. [Google Scholar] [CrossRef]
- Sattaso, S.; Nonlaopon, K.; Kim, H. Further properties of Laplace-type integral transforms. Dyn. Syst. Appl. 2019, 28, 195–215. [Google Scholar]
- Iwinski, T. Theory of Beams. The Applications of the Laplace Transformation Method to Engineering Problems; Pergamon Press: Oxford, UK; London, UK, 1967. [Google Scholar]
- Grasso, F.; Manetti, S.; Piccirilli, M.C.; Reatti, A. A Laplace transform approach to the simulation of DC-DC converters. Int. J. Numer. Model. 2019, 32, e2618. [Google Scholar] [CrossRef]
- Daci, A.; Tola, S. Applications of Laplace transform in finance. Int. Sci. J. Math. Model. 2020, 2, 130–133. [Google Scholar]
- Lumentat, M.F. Analytical techniques for broadband multi electrochemical piezoelectric bimorph beams with multifrequency power harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 2555–2568. [Google Scholar] [CrossRef]
- Hodasaleh, E.A.; Ebaid, A. Medical applications for the flow of carbon nano tubes suspended nano fluids in the presence of convective condition using Laplace transform. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 24, 206–212. [Google Scholar]
- Shah, N.A.; Elnaqeeb, T.; Animasaun, I.L.; Mahsud, Y. Insight into the natural convection flow through a vertical cylinder using Caputo time-fractional derivatives. Int. J. Appl. Comput. Math. 2018, 4, 80. [Google Scholar] [CrossRef]
- Hajizadeh, A.; Shah, N.A.; Shah, S.I.A.; Animasaun, I.L.; Rahimi-Gorji, M.; Alarifi, I.M. Free convection flow of nanofluids between two vertical plates with damped thermal flux. J. Mol. Liq. 2019, 289, 110964. [Google Scholar] [CrossRef]
- Reddy, K.J.P.; Kumar, K.; Satish, J.; Vaithyasubramanian, S. A review on applications of Laplace transformations in various fields. J. Adv. Res. Dyn. Control Syst. 2017, 9, 14–24. [Google Scholar]
- Babolian, E.; Salimi Shamloo, A. Numerical solution of Volterra integral and integro-differential equations of convolution type by using operational matrices of piecewise constant orthogonal functions. J. Comput. Appl. Math. 2008, 214, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.P.; Simões, A.M. Different Types of Hyers-Ulam-Rassias Stabilities for a Class of Integro-Differential Equations. Filomat 2017, 31, 5379–5390. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inoan, D.; Marian, D. Semi-Hyers–Ulam–Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform. Symmetry 2021, 13, 2181. https://doi.org/10.3390/sym13112181
Inoan D, Marian D. Semi-Hyers–Ulam–Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform. Symmetry. 2021; 13(11):2181. https://doi.org/10.3390/sym13112181
Chicago/Turabian StyleInoan, Daniela, and Daniela Marian. 2021. "Semi-Hyers–Ulam–Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform" Symmetry 13, no. 11: 2181. https://doi.org/10.3390/sym13112181
APA StyleInoan, D., & Marian, D. (2021). Semi-Hyers–Ulam–Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform. Symmetry, 13(11), 2181. https://doi.org/10.3390/sym13112181