Certain Applications of Generalized Kummer’s Summation Formulas for 2F1
Abstract
:1. Introduction and Preliminaries
2. Summation Formulas
3. Applications
3.1. Summation Formulas for the Kampé de Fériet Function
3.2. Deducible Summation Formulas
3.3. Transformation Formulas for
3.4. From to
3.5. Laplace Transforms and Inverse Laplace Transforms
4. Concluding Remarks and Posing of Problems
- Using the general summation formulas in Theorems 1–3, establish certain further identities similar to those in each of the subsections in Section 3: summation formulas for Kampé de Fériet function; deducible summation formulas; transformation formulas for ; from to ; Laplace transforms and inverse Laplace transforms;
- Provide other possible applications of the general summation formulas in Theorems 1–3.
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935; Reprinted by Stechert Hafner, New York, 1964. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Kummer, E.E. Über die hypergeometrische Reihe 1 + . J. Reine Angew. Math. 1836, 15, 39–83, 127–172. [Google Scholar]
- Choi, J.; Rathie, A.K.; Srivastava, H.M. A Generalization of a formula due to Kummer. Integral Transform. Spec. Funct. 2011, 22, 851–859. [Google Scholar] [CrossRef]
- Rainville, E.D. Special Functions; Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company: Bronx, NY, USA, 1971. [Google Scholar]
- Kim, Y.S.; Rakha, M.A.; Rathie, A.K. Extensions of certain classical summation theorems for the series 2F1, 3F2 and 4F3 with applications in Ramanujan’s summations. Int. J. Math. Math. Sci. 2010, 309503. [Google Scholar] [CrossRef] [Green Version]
- Vidunas, R. A generalization of Kummer’s identity. Rocky Mount. J. Math. 2002, 32, 919–935. [Google Scholar] [CrossRef]
- Vidunas, R. Contiguous relations of hypergeometric series. J. Comput. Appl. Math. 2003, 153, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Brychkov, Y.A.; Kim, Y.S.; Rathie, A.K. On new reduction formulas for the Humbert functions Ψ2, Φ2 and Φ3. Integral Transform. Spec. Funct. 2017, 28, 350–360. [Google Scholar] [CrossRef]
- Rakha, M.A.; Rathie, A.K. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications. Integral Transform. Spec. Funct. 2011, 22, 823–840. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Volume 3: More Special Functions; Overseas Publishers Association: Amsterdam, The Netherlands, 1986; Published under the license of Gordon and Breach Science Publishers. [Google Scholar]
- Qureshi, M.I.; Baboo, M.S. Some unified and generalized Kummer’s second summation theorems with applications in Laplace transform technique. Inter. J. Math. App. 2016, 4, 45–52. [Google Scholar]
- Qureshi, M.I.; Baboo, M.S. Summation theorems for pFq+1 [(αp); g ± m, (βq); z] via Mellin-Barnes type contour integral and its applications. Asia Pac. J. Math. 2016, 3, 193–207. [Google Scholar]
- Qureshi, M.I.; Baboo, M.S. Some unified and generalized Kummer’s first summation theorems with applications in Laplace transform technique. Asia Pac. J. Math. 2016, 3, 10–23. [Google Scholar]
- Fox, C. The expression of hypergeometric series in terms of similar series. Proc. Lond. Math. Soc. 1927, 26, 201–210. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas; CRC Press, Taylor & Fancis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008. [Google Scholar]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K. Generalizations of Whipple’s theorem on the sum of a 3F2. J. Comput. Appl. Math. 1996, 72, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Choi, J. Contiguous extensions of Dixon’s theorem on the sum of a 3F2. J. Inequal. Appl. 2010, 2010, 589618. [Google Scholar] [CrossRef] [Green Version]
- Exton, H. Multiple Hypergeometric Functions; Halsted Press: New York, NY, USA, 1976. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Series: Mathematics and its Applications; Ellis Horwood Ltd.: Chichester, UK; Halsted Press [John Wiley & Sons, Inc.]: New York, NY, USA, 1985. [Google Scholar]
- Appell, P.; De Fériet, J.K. Fonctions Hypergéométriques et Hypersphérique Polynômes d’Hermité; Gauthiers Villars: Paris, France, 1926. [Google Scholar]
- Carlitz, L. A Saalschützian theorem for double series. J. Lond. Math. Soc. 1963, 38, 415–418. [Google Scholar] [CrossRef]
- Carlitz, L. Another Saalschützian Theorem for Double Series. Rend. Semin. Mat. Univ. Padova 1964, 34, 200–203. [Google Scholar]
- Carlitz, L. A Summation Theorem for Double Hypergeometric Series. Rend. Semin. Mat. Univ. Padova 1967, 37, 230–233. [Google Scholar]
- Humbert, P. The confluent hypergeometric functions of two variables. Proc. R. Soc. Edinb. 1922, 41, 73–96. [Google Scholar] [CrossRef] [Green Version]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- De Fériet, J.K. Les fonctions hypergéometriques d’ordre supérieur aˇ deux variables. CR Acad. Sci. Paris 1921, 173, 401–404. [Google Scholar]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions. Q. J. Math. (Oxf. Ser.) 1940, 11, 249–270. [Google Scholar] [CrossRef]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions (II). Q. J. Math. (Oxf. Ser.) 1941, 12, 112–128. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Panda, R. An integral representation for the product of two Jacobi polynomials. J. Lond. Math. Soc. 1976, 12, 419–425. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampé de Fériet’s double hypergeometric series. Math. Nachr. 1972, 53, 151–159. [Google Scholar] [CrossRef]
- Paris, R.B. A Kummer-type transformation for a 2F2 hypergeometric function. J. Comput. Appl. Math. 2005, 173, 379–382. [Google Scholar] [CrossRef] [Green Version]
- der Jeugt, J.V.; Pitre, S.N.; Rao, K.S. Multiple hypergeometric functions and g − j coefficients. J. Phys. A Math. Gen. 1994, 27, 5251–5264. [Google Scholar] [CrossRef]
- Cvijović, C.; Miller, R. A reduction formula for the Kampé de Fériet function. Appl. Math. Lett. 2010, 23, 769–771. [Google Scholar] [CrossRef] [Green Version]
- der Jeugt, J.V.; Pitre, S.N.; Rao, K.S. Transformation and summation formulas for double hypergeometric series. J. Comput. Appl. Math. 1997, 83, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Cvijović, D. Closed-form summations of certain hypergeometric-type series containing the digamma function. J. Phys. A Math. Theor. 2008, 41, 455205. [Google Scholar] [CrossRef]
- Miller, A.R. Summations for certain series containing the digamma function. J. Phys. A Math. Gen. 2006, 39, 3011–3020. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W. Transformation and summation formulae for Kampé de Fériet series. J. Math. Anal. Appl. 2014, 409, 100–110. [Google Scholar] [CrossRef]
- Lavoie, J.L. Some evaluations for the generalized hypergeometric series. Math. Comp. 1986, 46, 215–218. [Google Scholar] [CrossRef]
- Exton, H. On the reducibility of the Kampé de Fériet function. J. Comput. Appl. Math. 1997, 83, 119–121. [Google Scholar] [CrossRef] [Green Version]
- Rainville, E.D. The contiguous function relations for pFq with applications to Bateman’s and Rice’s Hn (ζ, p, v). Bull. Amer. Math. Soc. 1945, 51, 714–723. [Google Scholar] [CrossRef] [Green Version]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K.; Arora, K. Generalizations of Dixon’s theorem on the sum of a 3F2. Math. Comput. 1994, 62, 267–276. [Google Scholar] [CrossRef]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K. Generalizations of Watson’s theorem on the sum of a 3F2. Indian J. Math. 1992, 34, 23–32. [Google Scholar]
- Churchill, R.V. Operational Mathematics, 3rd ed.; McGraw-Hill Book Company: New York, NY, USA, 1972. [Google Scholar]
- Brown, J.W.; Churchill, R.V. Complex Variables and Applications, 6th ed.; McGraw-Hill International: New York, NY, USA, 1996. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press, Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J. Certain Applications of Generalized Kummer’s Summation Formulas for 2F1. Symmetry 2021, 13, 1538. https://doi.org/10.3390/sym13081538
Choi J. Certain Applications of Generalized Kummer’s Summation Formulas for 2F1. Symmetry. 2021; 13(8):1538. https://doi.org/10.3390/sym13081538
Chicago/Turabian StyleChoi, Junesang. 2021. "Certain Applications of Generalized Kummer’s Summation Formulas for 2F1" Symmetry 13, no. 8: 1538. https://doi.org/10.3390/sym13081538
APA StyleChoi, J. (2021). Certain Applications of Generalized Kummer’s Summation Formulas for 2F1. Symmetry, 13(8), 1538. https://doi.org/10.3390/sym13081538