Yet Another New Variant of Szász–Mirakyan Operator
Abstract
:1. Introduction
2. Voronovskaja-Type Estimate
3. Weighted Uniform Approximation by
4. Direct Quantitative Estimate for
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- King, J.P. Positive linear operators which preserve x2. Acta Math. Hung. 2003, 99, 203–208. [Google Scholar] [CrossRef]
- Acar, T.; Aral, A.; Cárdenas-Morales, D.; Garrancho, P. Szász–Mirakyan type operators which fix exponentials. Results Math. 2017, 72, 1393–1404. [Google Scholar] [CrossRef]
- Acar, T. Asymptotic formulas for generalized Szász-Mirakyan operators. Appl. Math. Lett. 2015, 263, 223–239. [Google Scholar] [CrossRef]
- Duman, O.; Özarslan, M.A.; Della Vechia, B. Modified Szász-Mirakyan-Kantorovich operators preserving linear functions. Turk. J. Math. 2009, 33, 151–158. [Google Scholar]
- Yilmaz, O.G.; Bodur, M.; Aral, A. On approximation properties of Baskakov-Schurer-Szász operators preserving exponential functions. Filomat 2018, 32, 5433–5440. [Google Scholar] [CrossRef] [Green Version]
- Aral, A.; Cardenas-Morales, D.; Garrancho, P. Bernstein type operators that reproduce exponential functions. J. Math. Inequal. 2018, 12, 861–872. [Google Scholar] [CrossRef]
- Aral, A.; Ulusoy, G.; Deniz, E. A new construction of Szász-Mirakyan operators. Num. Algorithms 2018, 77, 313–326. [Google Scholar] [CrossRef]
- Deniz, E.; Aral, A.; Gupta, V. Note on Szász-Mirakyan-Durrmeyer operators preserving e2ax, a > 0. Num. Funct. Anal. Optim. 2018, 39, 201–207. [Google Scholar] [CrossRef]
- Bodur, M.; Yilmar, O.G.; Aral, A. Approximation by Baskakov-Szász-Stancu operators preserving exponential functions. Constr. Math. Anal. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Cárdenas-Morales, D.; Garrancho, P.; Raşa, I. Bernstein-type operators which preserve polynomials. Compt. Math. Appl. 2011, 62, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Aral, A.; Inoan, D.; Raşa, I. On the generalized Szász-Mirakyan operators. Results Math. 2014, 65, 441–452. [Google Scholar] [CrossRef]
- Duman, O.; Özarslan, M.A. Szász-Myrakyan type operators providing a better error estimation. Appl. Math. Lett. 2007, 20, 1184–1188. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V. Approximation by Generalizations of Hybrid Baskakov Type Operators Preserving Exponential Functions, Mathematical Analysis and Applications: Selected Topics; Michael, R., Hemen, D., Ravi, P.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Gupta, V.; Acu, A.M. On Baskakov–Szász–Mirakyan-type operators preserving exponential type functions. Positivity 2018, 22, 919–929. [Google Scholar] [CrossRef]
- Gupta, V.; Aral, A. A note on Szaász-Mirakyan-Kantorovich type operators preserving e−x. Positivity 2018, 22, 415–423. [Google Scholar] [CrossRef]
- Gupta, V.; Tachev, G. On approximation properties of Phillips operators preserving exponential functions. Mediterr. J. Math. 2017, 14, 177. [Google Scholar] [CrossRef]
- Ulusoy, G.; Acar, T. Approximation by modified Szász-Durrmeyer operators. Period. Math. Hung. 2016, 72, 64–75. [Google Scholar]
- Boyanov, B.D.; Veselinov, V.M. A note on the approximation of functions in an infinite interval by linear positive operators. Bull. Math. Soc. Sci. Math. Roum. 1970, 14, 9–13. [Google Scholar]
- Holhoş, A. The rate of approximation of functions in an infinite interval by positive linear operators. Stud. Univ. Babeş-Bolyai Math. 2010, 2, 133–142. [Google Scholar]
- Yilmaz, Ö.G.; Gupta, V.; Aral, A. On Baskakov operators preserving the exponential functions. J. Numer. Anal. Approx. Theory 2017, 46, 150–161. [Google Scholar]
- Yilmaz, Ö.G.; Aral, A.; Yesildal, F.T. On Szász-Mirakyan type operators preserving polynomials. J. Numer. Anal. Approx. Theory 2017, 46, 93–106. [Google Scholar]
- Yilmaz, Ö.G.; Gupta, V.; Aral, A. A note on Baskakov-Kantorovich type operators preserving e-x. Math. Methods Appl. Sci. 2020, 43, 7511–7517. [Google Scholar] [CrossRef]
- Gupta, V.; López-Moreno, A.J. Phillips operators preserving arbitrary exponential functions eat, ebt. Filomat 2018, 32, 5071–5082. [Google Scholar] [CrossRef]
- Gadziev, A.D. The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogues to that of P.P. Korovkin. Dokl. Akad. Nauk. SSSR 1974, 218, 1001–1004. [Google Scholar]
- Mahmudov, N.I. q-Szász-Mirakyan operators which fix x2. J. Comput. Appl. Math. 2011, 235, 4621–4628. [Google Scholar] [CrossRef] [Green Version]
- Acar, T.; Aral, A.; Gonska, H. On Szász-Mirakyan operator preserving e2ax, a>0. Mediterr. J. Math. 2017, 14, 6. [Google Scholar] [CrossRef]
- Gadziev, A.D. Theorems of the type of P.P. Korovkin’s Theorems. Mat. Zametki 1976, 20, 781–786. [Google Scholar]
- Holhoş, A. Quantitative estimates for positive linear operators in weighted spaces. Gen. Math. 2008, 16, 99–110. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acu, A.M.; Tachev, G. Yet Another New Variant of Szász–Mirakyan Operator. Symmetry 2021, 13, 2018. https://doi.org/10.3390/sym13112018
Acu AM, Tachev G. Yet Another New Variant of Szász–Mirakyan Operator. Symmetry. 2021; 13(11):2018. https://doi.org/10.3390/sym13112018
Chicago/Turabian StyleAcu, Ana Maria, and Gancho Tachev. 2021. "Yet Another New Variant of Szász–Mirakyan Operator" Symmetry 13, no. 11: 2018. https://doi.org/10.3390/sym13112018
APA StyleAcu, A. M., & Tachev, G. (2021). Yet Another New Variant of Szász–Mirakyan Operator. Symmetry, 13(11), 2018. https://doi.org/10.3390/sym13112018