# Gravitational Dispersion Forces and Gravity Quantization

## Abstract

**:**

## 1. Introduction

## 2. The Quantum Structure of the Atom, Quantum Electrodynamics, and Dispersion Forces

“Finally we note that many readers of this journal view forces between elementary particles of nature as originating from the exchange of virtual quanta of fields to which they are coupled. The induced interaction discussed in this paper fits nicely into that scheme, but with real quanta being exchanged. We wonder whether other particles and fields may be substituted for our dipoles and light, yielding analogous effects in other domains of physics” [82].

“Physical reasoning does help some people to generate suggestions as to how the unknown may be related to the known. Theories of the known, which are described by different physical ideas may be equivalent in all their predictions and are hence scientifically indistinguishable. However, they are not psychologically identical when trying to move from that base into the unknown. For different views suggest different kinds of modifications which might be made and hence are not equivalent in the hypotheses one generates from them in ones attempt to understand what is not yet understood. I, therefore, think that a good theoretical physicist today might find it useful to have a wide range of physical viewpoints and mathematical expressions of the same theory (for example, of quantum electrodynamics)…”

## 3. Gravitational Dispersion Forces

## 4. Unretarded Higher Multipole Electrodynamical van der Waals Forces

#### 4.1. Margenau’s Algorithm: London Potential

#### 4.2. Margenau’s Algorithm: Quadrupole van der Waals Forces

## 5. Unretarded Gravitational van der Waals Forces

## 6. McLachlan’s Semiclassical Calculation of Electrodynamical Dispersion Forces

#### 6.1. Electric Dipole–Electric Dipole Dispersion Forces

#### 6.2. Application to Dispersion Forces with Electric Quadrupoles: One-Dimensional Case

#### 6.3. Application of McLachlan’s Approach to Gravitational Dispersion Forces

## 7. Experimental Detection of Gravitational Dispersion Forces

## 8. Discussion and Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Acknowledgments

## Conflicts of Interest

## References

- Simpson, W.M. Ontological aspects of the Casimir Effect. Stud. Hist. Philos. Mod. Phys.
**2014**, 48, 84–88. [Google Scholar] [CrossRef] [Green Version] - Casimir, H.B.G. On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetenshap
**1948**, 51, 793–795. [Google Scholar] - Pinto, F. The future of van der Waals force enabled technology-transfer into the aerospace marketplace. In Nanotube Superfiber Materials, Science to Commercialization; Schulz, M.J., Shanov, V.N., Yin, J., Cahay, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 29; pp. 729–794. [Google Scholar]
- Sakurai, J.J. Advanced Quantum Mechanics; Addison-Wesley Publ. Co.: Redwood City, CA, USA, 1987. [Google Scholar]
- Planck, M. Über die Begründung des Gesetzes der schwarzen Strahlung. Ann. Phys.
**1912**, 342, 642–656. [Google Scholar] [CrossRef] [Green Version] - Einstein, A.; Stern, O. Einige Argumente für die Annahme einer molekularen Agitation beim absoluten Nullpunkt. Ann. Phys.
**1913**, 345, 551–560. [Google Scholar] [CrossRef] [Green Version] - Bohr, N. Niels Bohr Collected Works; North-Holland Publishing Company: Amsterdam, The Netherlands, 1981; Volume 2. [Google Scholar]
- Nernst, W. Uber einen versuch, von quantentheoretischen Betrachtungen zur Annahme stetiger Energieanderungen zuruckzukehren. Verhandlungen Dtsch. Phys. Ges.
**1916**, 18, 83–117. [Google Scholar] - Chu, B. Molecular Forces, Based on the Baker Lectures of Peter J. W. Debye; John Wiley & Sons: New York, NY, USA, 1967. [Google Scholar]
- Kuhn, T.S. Black-Body Theory and the Quantum Discontinuity, 1894–1912; Clarendon Press: Oxford, UK, 1978. [Google Scholar]
- Milonni, P.W. The Quantum Vacuum; Academic Press: San Diego, CA, USA, 1994; p. 522. [Google Scholar]
- Kragh, H. Preludes to dark energy: Zero-point energy and vacuum speculations. Arch. Hist. Exact Sci.
**2012**, 66, 199–240. [Google Scholar] [CrossRef] [Green Version] - Power, E.A. Introductory Quantum Electrodynamics; American Elsevier Publishing Company: New York, NY, USA, 1965. [Google Scholar]
- Wang, S.C. Die gegenseitige Einwirkung zweier Wasserstoffatome. Phys. Z.
**1927**, 28, 663–666. [Google Scholar] - Von Eisenschitz, R.; London, F. Uber das Verhaltnis der van der Waalsschen Krafte zu den homoopolaren Bindungskraften. Z. Phys.
**1930**, 60, 491–527. [Google Scholar] [CrossRef] - Pais, A. Imward Bound; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- London, F. The general theory of molecular forces. Trans. Faraday Soc.
**1937**, 33, 8–26. [Google Scholar] [CrossRef] - Margenau, H. The role of quadrupole forces in van der Waals attractions. Phys. Rev.
**1931**, 38, 747–756. [Google Scholar] [CrossRef] - Margenau, H. Quadrupole Contributions to London’s dispersion forces. J. Chem. Phys.
**1938**, 6, 896–899. [Google Scholar] [CrossRef] - Verwey, E.J.W.; Overbeek, J.T.G. Theory of the Stability of Lyophobic Colloids; Elsevier Publishing Company, Inc.: New York, NY, USA, 1948; pp. 1–108. [Google Scholar]
- Casimir, H.B.G. Some remarks on the history of the so-called Casimir effect. In The Casimir Effect 50 Years Later, Proceedings of the Fourth Workshop on Quantum Field Theory Under the Influence of External Conditions, Leipzig, Germany, 14–18 September 1998; Bordag, M., Ed.; World Scientific Publishing Co., Pte. Ltd.: Singapore, 1999; pp. 3–9. [Google Scholar]
- Pinto, F. Casimir forces: Fundamental theory, computation, and nanodevices applications. In Quantum Nano-Photonics, NATO Science for Peace and Security Series B: Physics and Biophysics (Erice, Sicily, Italy); Di Bartolo, B., Ed.; Springer Nature B.V.: Berlin/Heidelberg, Germany, 2018; pp. 149–180. [Google Scholar]
- Casimir, H.B.G.; Polder, D. Influence of retardation on the London-van-der-Waals forces. Nature
**1946**, 158, 787–788. [Google Scholar] [CrossRef] - Casimir, H.B.G.; Polder, D. The influence of retardation on the London-van der Waals forces. Phys. Rev.
**1948**, 73, 360–372. [Google Scholar] [CrossRef] - Casimir, H.B.G. On the history of the so-called Casimir effect. In Comments on Atomic and Molecular Physics, Comments on Modern Physics. Part D (Special Issue: Casimir Forces); Babb, J.F., Milonni, P.W., Spruch, L., Eds.; Gordon and Breach Science Publishers: Kuala Lumpur, Malaysia, 2000; Volume 1, pp. 175–177. [Google Scholar]
- Casimir, H.B.G. Van der Waals forces and zero point energy. In Physics of Strong Fields; Greiner, W., Ed.; Springer US: New York, NY, USA, 1987; pp. 957–964. [Google Scholar]
- Casimir, H.B.G. Van der Waals forces and zero point energy. In Essays in Honour of Victor Frederick Weisskopf (Physics and Society); Springer: New York, NY, USA, 1998; pp. 53–66. [Google Scholar]
- Einstein, A. Folgerungen aus den Capillaritätserscheinungen. Ann. Der Phys.
**1901**, 4, 513–523. [Google Scholar] [CrossRef] [Green Version] - Einstein, A. Conclusions drawn from the phenomena of capillarity. In The Collected Papers of Albert Einstein, Vol. 2 (The Swiss Years, Scientific Writings, 1900–1909); Princeton University Press: Princeton, NJ, USA, 1901; pp. 1–11. [Google Scholar]
- De Boer, J.H. The influence of van der Waals forces and primary bonds on binding energy, strength and special reference to some artificial resins. Trans. Faraday Soc.
**1936**, 32, 10–37. [Google Scholar] [CrossRef] - Hamaker, H. The London-van der Waals attraction between spherical particles. Physica
**1937**, 4, 1058–1072. [Google Scholar] [CrossRef] - Rowlinson, J.S. Cohesion—A Scientific History of Intermolecular Forces; Cambridge University Press: Cambridge, UK, 2002; pp. 1–333. [Google Scholar]
- Axilrod, B.M.; Teller, E. Interaction of the van der Waals Type Between Three Atoms. J. Chem. Phys.
**1943**, 11, 299–300. [Google Scholar] [CrossRef] - Lifshitz, E.M. The theory of molecular attractive forces between solids. Sov. Phys. JETP
**1956**, 2, 73–83. [Google Scholar] - Dzyaloshinskii, I.; Lifshitz, E.M.; Pitaevskii, L.P. The general theory of van der Waals forces. Adv. Phys.
**1961**, 10, 165–209. [Google Scholar] [CrossRef] - Bordag, M.; Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. Advances in the Casimir Effect; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Klimchitskaya, G.L.; Mohideen, U.; Mostepanenko, V.M. The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys.
**2009**, 81, 1827–1885. [Google Scholar] [CrossRef] [Green Version] - Dalvit, D.A.R.; Milonni, P.W.; Roberts, D.; da Rosa, F. Casimir Physics; Springer Lecture Notes in Physics 834; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Lamoreaux, S.K. The Casimir Force and Related Effects: The Status of the Finite Temperature Correction and Limits on New Long-Range Forces. Annu. Rev. Nucl. Part. Sci.
**2012**, 62, 37–56. [Google Scholar] [CrossRef] - Schwinger, J.; DeRaad, L.L.; Milton, K.A. Casimir effect in dielectrics. Ann. Phys.
**1978**, 23, 1–23. [Google Scholar] [CrossRef] - Saunders, S. Is the Zero-Point Energy Real? In Ontological Aspects of Quantum Field Theory; Kuhlmann, M., Lyre, H., Wayne, A., Eds.; World Scientific: Hackensack, NJ, USA, 2002; Chapter 16; pp. 313–343. [Google Scholar]
- Langbein, D. Theory of van der Waals Attraction; Springer: Berlin/Heidelberg, Germany, 1974; pp. 1–144. [Google Scholar]
- Copernicus, N. On the Revolutions of the Heavenly Spheres; Great Books of the Western World; William Benton: Chicago, IL, USA, 1952; Volume 16. [Google Scholar]
- Copernico, N. De Revolutionibus Orbium Caelestium—La Costituzione Generale Dell’universo—A Cura di Alexandre Koyré; Giulio Einaudi Editore s.p.a.: Torino, Italy, 1975. [Google Scholar]
- Lamoreaux, S.K. Casimir forces: Still surprising after 60 years. Phys. Today
**2007**, 60, 40–45. [Google Scholar] [CrossRef] - Karplus, M.; Porter, R.N. Atoms & Molecules; The Benjamin/Cummings Publishing Company: Menlo Park, CA, USA, 1970. [Google Scholar]
- Kleppner, D. With apologies to Casimir. Phys. Today
**1990**, 43, 9–11. [Google Scholar] [CrossRef] - Mahanty, J.; Ninham, B.W. Dispersion Forces; Academic Press: London, UK, 1976. [Google Scholar]
- McLachlan, A.D. Retarded Dispersion Forces Between Molecules. Proc. Roy. Soc. (Lond.) Ser. A
**1963**, 271, 387–401. [Google Scholar] - Margenau, H.; Kestner, N.R. Theory of Intermolecular Forces, 2nd ed.; Pergamon Press: Oxford, UK, 1971; pp. 1–400. [Google Scholar]
- Marshall, T.W. Random Electrodynamics. Proc. R. Soc. Math. Phys. Eng. Sci.
**1963**, 276, 475–491. [Google Scholar] [CrossRef] - Marshall, T.W. Statistical electrodynamics. Proc. Camb. Phil. Soc.
**1965**, 61, 537–546. [Google Scholar] [CrossRef] - Boyer, T.H. Recalculations of long-range van der Waals potentials. Phys. Rev.
**1969**, 180, 19–24. [Google Scholar] [CrossRef] - Boyer, T.H. Van der Waals forces and zero-point energy for dielectric and permeable materials. Phys. Rev. A
**1974**, 9, 2078–2084. [Google Scholar] [CrossRef] - Hushwater, V. Repulsive Casimir force as a result of vacuum radiation pressure. Am. J. Phys.
**1997**, 65, 381–384. [Google Scholar] [CrossRef] - Spruch, L.; Kelsey, J. Vacuum fluctuation and retardation effects on long-range potentials. Phys. Rev. A
**1978**, 18, 845–852. [Google Scholar] [CrossRef] - Spruch, L. Retarded, or Casimir, Long-Range Potentials. Phys. Today
**1986**, 39, 37–45. [Google Scholar] [CrossRef] - Boyer, T.H. Blackbody Radiation and the Scaling Symmetry of Relativistic Classical Electron Theory with Classical Electromagnetic Zero-Point Radiation. Found. Phys.
**2010**, 40, 1096–1098. [Google Scholar] [CrossRef] [Green Version] - Camparo, J. Semiclassical description of radiative decay in a colored vacuum. Phys. Rev. A
**2001**, 65, 13815. [Google Scholar] [CrossRef] - Pinto, F. Gravitational Casimir effect, the Lifshitz theory, and the existence of gravitons. Class. Quantum Grav.
**2016**, 33, 237001. [Google Scholar] [CrossRef] - González, A.E. On Casimir pressure, the Lorentz force and black body radiation. Physica
**1985**, 131A, 228–236. [Google Scholar] [CrossRef] - Milonni, P.W.; Cook, R.J.; Goggin, M.E. Radiation pressure from the vacuum: Physical interpretation of the Casimir force. Phys. Rev. A
**1988**, 38, 1621–1623. [Google Scholar] [CrossRef] [Green Version] - Barton, G. On the fluctuations of the Casimir force. J. Phys. A Math. Gen.
**1991**, 24, 991–1005. [Google Scholar] [CrossRef] - Susbilla, R.T. Casimir Acoustics. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 1996. [Google Scholar]
- Holmes, C.D. Acoustic Casimir Effect. Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, USA, 1997. [Google Scholar]
- Larraza, A.; Denardo, B. An acoustic Casimir effect. Phys. Lett. A
**1998**, 248, 151–155. [Google Scholar] [CrossRef] - Larraza, A.; Holmes, C.D.; Susbilla, R.T.; Denardo, B.C. The force between two parallel rigid plates due to the radiation pressure of broadband noise: An acoustic Casimir effect. J. Acoust. Soc. Am.
**1998**, 103, 2267–2272. [Google Scholar] [CrossRef] - Ford, L.H. Spectrum of the Casimir effect and the Lifshitz theory. Phys. Rev. A
**1993**, 48, 2962–2967. [Google Scholar] [CrossRef] [PubMed] - Esquivel-Sirvent, R.; Reyes, L.I. Pull-in control in microswitches using acoustic Casimir forces. EPL
**2008**, 84, 48002. [Google Scholar] [CrossRef] [Green Version] - Serry, F.M.; Walliser, D.; Maclay, G. The anharmonic Casimir oscillator (ACO)-the Casimir effect in a model microelectromechanical system. J. Microelectromech. Syst.
**1995**, 4, 193–205. [Google Scholar] [CrossRef] - Boersma, S.L. A maritime analogy of the Casimir effect. Am. J. Phys.
**1996**, 64, 539–541. [Google Scholar] [CrossRef] - Denardo, B.C.; Puda, J.J.; Larraza, A. A water wave analog of the Casimir effect. Am. J. Phys.
**2009**, 77, 1095. [Google Scholar] [CrossRef] [Green Version] - Ball, P. Popular physics myth is all at sea. Nature
**2006**, 2006–2008. [Google Scholar] [CrossRef] - Fisher, D.J. Maritime Casimir effect. Am. J. Phys.
**1996**, 64, 1228. [Google Scholar] [CrossRef] - Brügger, G.; Froufe-Pérez, L.S.; Scheffold, F.; Sáenz, J.J. Controlling dispersion forces between small particles with artificially created random light fields. Nat. Commun.
**2015**, 6, 7460. [Google Scholar] [CrossRef] [Green Version] - Holzmann, D.; Ritsch, H. Tailored long range forces on polarizable particles by collective scattering of broadband radiation. New J. Phys.
**2016**, 18, 103041. [Google Scholar] [CrossRef] [Green Version] - Shi, Y.Z.; Xiong, S.; Zhang, Y.; Chin, L.K.; Chen, Y.Y.; Zhang, J.B.; Zhang, T.H.; Ser, W.; Larrson, A.; Lim, S.H.; et al. Sculpting nanoparticle dynamics for single- bacteria-level screening and direct binding-efficiency measurement. Nat. Commun.
**2018**, 9, 815. [Google Scholar] [CrossRef] - Thirunamachandran, T. Intermolecular interactions in the presence of an intense radiation field. Mol. Phys.
**1980**, 40, 393–399. [Google Scholar] [CrossRef] - Craig, D.P.; Thirunamachandran, T. Molecular Quantum Electrodynamics; Dover Publications, Inc.: Mineola, NY, USA, 1998. [Google Scholar]
- O’Dell, D.; Giovanazzi, S.; Kurizki, G.; Akulin, V.M. Bose-Einstein condensates with 1/r interatomic attraction: Electromagnetically induced “gravity”. Phys. Rev. Lett.
**2000**, 84, 5687–5690. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Luis-Hita, J.; Marqués, M.I.; Delgado-Buscalioni, R.; de Sousa, N.; Froufe-Pérez, L.S.; Scheffold, F.; Sáenz, J.J. Light Induced Inverse-Square Law Interactions between Nanoparticles: “Mock Gravity” at the Nanoscale. Phys. Rev. Lett.
**2019**, 123, 143201. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Burns, M.M.; Fournier, J.M.; Golovchenko, J.A. Optical binding. Phys. Rev. Lett.
**1989**, 63, 1233–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version] - DeWitt, B.S. The Casimir effect in field theory. In Physics in the Making; Sarlemijn, A., Sparnaay, M.J., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1989; Chapter 9B; pp. 247–272. [Google Scholar]
- Lamoreaux, S.K. Demonstration of the Casimir Force in the 0.6 to 6 µ m Range. Phys. Rev. Lett.
**1997**, 78, 5–8. [Google Scholar] [CrossRef] [Green Version] - Lamoreaux, S.K. The Casimir force: Background, experiments, and applications. Rep. Prog. Phys.
**2004**, 68, 201–236. [Google Scholar] [CrossRef] - Wright, A. Milestone 6. QED. Nat. Mater.
**2010**, 9, pS9. [Google Scholar] [CrossRef] - Feynman, R.P. The development of the space-time view of quantum-electrodynamics. Science
**1966**, 153, 699–708. [Google Scholar] [CrossRef] - Pinto, F. Resolution of a paradox in classical electrodynamics. Phys. Rev. D
**2006**, 73, 104020. [Google Scholar] [CrossRef] - Fermi, E. Sull’elettrostatica di un campo gravitazionale uniforme e sul peso delle masse elettromagnetiche. Il Nuovo Cimento
**1921**, 22, 176–188. [Google Scholar] [CrossRef] [Green Version] - Gorelik, G.E. The First Steps of Quantum Gravity and the Planck Values. In Studies in the History of General Relativity; Eisenstaedt, J., Kox, A., Eds.; Eistenin Studies; Birkhäuser: Basel, Switzerland, 1992; Volume 3, p. 367. [Google Scholar]
- Stachel, J. The Early History of Quantum Gravity (1916–1940). In Black Holes, Gravitational Radiation and the Universe; Iyer, B.R., Bhawal, B., Eds.; Fundamental Theories of Physics; Springer Science: Dordrecht, The Netherlands, 1999; Volume 100, Chapter 31; pp. 525–534. [Google Scholar]
- Kiefer, C. Quantum Gravity; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Rosenfeld, L. Zur Quantelung der Wellenfelder. Ann. Phys.
**1930**, 397, 113–152. [Google Scholar] [CrossRef] - Bronstein, M. Quantentheorie schwacher Gravitationsfelder. Phys. Z. Sowjetunion
**1936**, 9, 140–157. [Google Scholar] - Deser, S.; Starobinsky, A. Editorial note to: Matvei P. Bronstein, Quantum theory of weak gravitational field. Gen. Relativ. Gravit.
**2012**, 44, 263–265. [Google Scholar] [CrossRef] [Green Version] - Bronstein, M. Republication of: Quantum theory of weak gravitational fields. Gen. Relativ. Gravit.
**2012**, 44, 267–283. [Google Scholar] [CrossRef] - Gorelik, G.E.; Frenkel, V.Y. Matvei Petrovich Bronstein and Soviet Theoretical Physics in the Thirties, 1st ed.; Springer: Basel, Switzerland, 1994. [Google Scholar]
- Planck, M. Über irreversible Strahlungsvorgänge. Sitzungsberichte Königlich-Preußischen Akad. Wiss.
**1899**, 5, 440–480. [Google Scholar] - DeWitt, C.M.; DeWitt, B.S. Falling charges. Physics
**1964**, 1, 3–20. [Google Scholar] [CrossRef] [Green Version] - Berends, F.A.; Gastmans, R. Quantum electrodynamical corrections to graviton-matter vertices. Ann. Phys.
**1976**, 98, 225–236. [Google Scholar] [CrossRef] - Milton, K.A. Quantum-electrodynamic corrections to the gravitational interaction of the electron. Phys. Rev. D
**1977**, 15, 538–540. [Google Scholar] [CrossRef] - Barker, B.M.; O’Connell, R.F. Post-Newtonian two-body and n-body problems with electric charge in general relativity. J. Math. Phys.
**1977**, 18, 1818–1824. [Google Scholar] [CrossRef] - Gupta, S.N.; Radford, S.F. Quantum field-theoretical electromagnetic and gravitational two-particle potentials. Phys. Rev. D
**1980**, 21, 2213–2225. [Google Scholar] [CrossRef] - Butt, M.S. Leading quantum gravitational corrections to QED. Phys. Rev. D
**2006**, 74, 125007. [Google Scholar] [CrossRef] [Green Version] - Holstein, B.R. Graviton physics. Am. J. Phys.
**2006**, 74, 1002–1011. [Google Scholar] [CrossRef] [Green Version] - Holstein, B.R.; Ross, A. Long Distance Effects in Mixed Electromagnetic-Gravitational Scattering. arXiv
**2008**, arXiv:0802.0717. [Google Scholar] - Holstein, B.R. Analytical On-shell Calculation of Low Energy Higher Order Scattering. J. Phys. G Nucl. Part. Phys.
**2017**, 44, 1LT01. [Google Scholar] [CrossRef] [Green Version] - Feinberg, G.; Sucher, J.; Au, C.K. The dispersion theory of dispersion forces. Phys. Rep.
**1989**, 180, 83–157. [Google Scholar] [CrossRef] - Spruch, L. An overview of long-range Casimir interactions. In Long-Range Casimir Forces; Levin, F.S., Micha, D.A., Eds.; Springer Science + Business Media: New York, NY, USA, 1993; Chapter 1; pp. 1–71. [Google Scholar]
- Dowling, J.P. Retarded potentials (Letter). Phys. Today
**1991**, 39, 13–15. [Google Scholar] [CrossRef] - Barut, A.O. Electromagnetic Interactions beyond Quantum Electrodynamics. In Foundations of Radiation Theory and Quantum Electrodynamics; Barut, A.O., Ed.; Springer Science + Business Media: Berlin/Heidelberg, Germany, 1980; Chapter 14; pp. 165–172. [Google Scholar]
- Barut, A.O. Quantum-electrodynamics based on self-energy. Phys. Scr.
**1988**, T21, 18–21. [Google Scholar] [CrossRef] - Barut, A.O.; Van Huele, J.F. Quantum electrodynamics based on self-energy: Lamb shift and spontaneous emission without field quantization. Phys. Rev. A
**1985**, 32, 3187–3195. [Google Scholar] [CrossRef] [Green Version] - Barut, A.O.; Dowling, J.P. Quantum electrodynamics based on self-energy, without second quantization: The Lamb shift and long-range Casimir-Polder van der Waals forces near boundaries. Phys. Rev. A
**1987**, 36, 2550–2556. [Google Scholar] [CrossRef] - Barut, A.O.; Dowling, J.P. Self-field quantum electrodynamics: The two-level atom. Phys. Rev. A
**1990**, 41, 2284–2294. [Google Scholar] [CrossRef] - Appelquist, T.; Chodos, A. Quantum effects in Kaluza-Klein theories. Phys. Rev. Lett.
**1983**, 50, 141–145. [Google Scholar] [CrossRef] - Appelquist, T.; Chodos, A. Quantum dynamics of Kaluza-Klein theories. Phys. Rev. D
**1983**, 28, 772–784. [Google Scholar] [CrossRef] - Abe, O. Casimir Energy in Quantum Gravity in R1 times T3 Space-Time. Prog. Theor. Phys.
**1984**, 72, 1225–1232. [Google Scholar] [CrossRef] [Green Version] - Panella, O.; Widom, A. Casimir effects in gravitational interactions. Phys. Rev. D
**1994**, 49, 917–922. [Google Scholar] [CrossRef] - Panella, O.; Widom, A.; Srivastava, Y.N. Casimir effects for charged particles. Phys. Rev. B
**1990**, 42, 9790–9793. [Google Scholar] [CrossRef] - Torr, D.G.; Li, N. Gravitoelectric-electric coupling via superconductivity. Found. Phys. Lett.
**1993**, 6, 371–383. [Google Scholar] [CrossRef] - Woods, R.C. Manipulation of gravitational waves for communications applications using superconductors. Phys. C
**2005**, 433, 101–107. [Google Scholar] [CrossRef] - Garcia-Cuadrado, G. Towards a New Era in Gravitational Wave Detection: High Frequency Gravitational Wave Research. In Proceedings of the Space, Propulsion & Energy Sciences International Forum SPESIF-2009, Huntsville, AL, USA, 24–27 February 2009; Volume 1103, pp. 553–563. [Google Scholar] [CrossRef] [Green Version]
- Woods, R.C. Interactions between supeconductors and high-frequency gravitational waves. In Gravity-Superconductors Interactions: Theory and Experiment; Modanese, G., Robertson, G.A., Eds.; Bentham: Sharjah, UAE, 2012; pp. 23–57. [Google Scholar]
- Minter, S.J.; Wegter-McNelly, K.; Chiao, R.Y. Do mirrors for gravitational waves exist? Phys. E Low-Dimens. Syst. Nanostruct.
**2010**, 42, 234–255. [Google Scholar] [CrossRef] [Green Version] - Sakharov, A.D. Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation. Gen. Relativ. Gravit.
**2000**, 32, 365–367. [Google Scholar] [CrossRef] - Visser, M. Sakharov’s induced gravity: A modern perspective. Mod. Phys. Lett. A
**2002**, 17, 977–991. [Google Scholar] [CrossRef] [Green Version] - Belgiorno, F.; Liberati, S. Black hole thermodynamics, Casimir effect and Induced Gravity. Gen. Relativ. Gravit.
**1997**, 29, 1181–1194. [Google Scholar] [CrossRef] [Green Version] - Quach, J.Q. Gravitational Casimir Effect. Phys. Rev. Lett.
**2015**, 114, 81104. [Google Scholar] [CrossRef] [PubMed] - Quach, J.Q. Erratum: Gravitational Casimir Effect. Phys. Rev. Lett.
**2017**, 118, 139901. [Google Scholar] [CrossRef] [PubMed] - Ford, L.H.; Hertzberg, M.P.; Karouby, J. Quantum Gravitational Force Between Polarizable Objects. Phys. Rev. Lett.
**2016**, 116, 151301. [Google Scholar] [CrossRef] - Wu, P.; Hu, J.; Yu, H. Quantum correction to classical gravitational interaction between two polarizable objects. Phys. Lett. B
**2016**, 763, 40–44. [Google Scholar] [CrossRef] [Green Version] - Hu, J.; Yu, H. Gravitational Casimir—Polder effect. Phys. Lett. B
**2017**, 767, 16–19. [Google Scholar] [CrossRef] - Holstein, B.R. Connecting Compton and Gravitational Compton Scattering. EPJ Web Conf.
**2017**, 134, 1003. [Google Scholar] [CrossRef] [Green Version] - Rini, M. Synopsis: A Casimir Effect Caused by Gravity. Physics
**2015**, 8, s23. [Google Scholar] - Becker, A. Ultra-cold mirrors could reveal gravity’s quantum side. New Sci.
**2015**. [Google Scholar] [CrossRef] - Hossenfelder, S. Can we prove the quantization of gravity with the Casimir effect? Probably not. arXiv
**2015**, arXiv:1502.07429. [Google Scholar] - Pinto, F. If detected, would hypothetical gravitational Casimir effects prove gravity quantization? In Proceedings of the Fourteenth Marcel Grossman Meeting on General Relativity, Rome, Italy, 12–18 July 2015; Bianchi, M., Jantzen, R.T., Ruffini, R., Eds.; World Scientific: Singapore, 2017; pp. 3966–3973. [Google Scholar] [CrossRef]
- Abbott, B.P. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett.
**2016**, 116, 61102. [Google Scholar] [CrossRef] [PubMed] - Griffiths, D.J.; Ho, E. Classical Casimir effect for beads on a string. Am. J. Phys.
**2001**, 69, 1173–1176. [Google Scholar] [CrossRef] - Boyer, T.H. Casimir forces and boundary conditions in one dimension: Attraction, repulsion, Planck spectrum, and entropy. Am. J. Phys.
**2003**, 71, 990–998. [Google Scholar] [CrossRef] [Green Version] - Dev, P.S.B.; Mazumdar, A. Probing the scale of new physics by Advanced LIGO/VIRGO. Phys. Rev. D
**2016**, 93, 104001. [Google Scholar] [CrossRef] [Green Version] - Ross, D.K.; Moreau, W. Stochastic Gravity. Gen. Relativ. Gravit.
**1995**, 27, 845–858. [Google Scholar] [CrossRef] - Allen, B. The stochastic gravity-wave background: Sources and detection. In Proceedings of the Les Houches School on Astrophysical Sources of Gravitational Waves, Les Houches, France, 26 September–6 October 1995; pp. 373–417. [Google Scholar]
- Lasky, P.D.; Mingarelli, C.M.F.; Smith, T.L.; Giblin, J.T.; Thrane, E.; Reardon, D.J.; Caldwell, R.; Bailes, M.; Bhat, N.D.R.; Burke-spolaor, S.; et al. Gravitational-Wave Cosmology across 29 Decades in Frequency. Phys. Rev. X
**2016**, 6, 11035. [Google Scholar] [CrossRef] [Green Version] - Quiñones, D.A.; Oniga, T.; Varcoe, B.T.H.; Wang, C.H. Quantum principle of sensing gravitational waves: From the zero-point fluctuations to the cosmological stochastic background of spacetime. Phys. Rev. D
**2017**, 96, 44018. [Google Scholar] [CrossRef] [Green Version] - Rugh, S.E.; Zinkernagel, H.; Cao, T.Y. The Casimir Effect and the Interpretation of the Vacuum. Stud. Hist. Philos. Sci. Part Stud. Hist. Philos. Mod. Phys.
**1999**, 30, 111–139. [Google Scholar] [CrossRef] - Pinto, F. Improved finite-difference computation of the van der Waals force: One-dimensional case. Phys. Rev. A
**2009**, 80, 42113. [Google Scholar] [CrossRef] - Cohen-Tannoudji, C.; Diu, B.; Laloe, F. Quantum Mechanics (Two Volumes); John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Power, E.A.; Thirunamachandran, T. Dispersion interactions between atoms involving electric quadrupole polarizabilities. Phys. Rev. A
**1996**, 53, 1567–1575. [Google Scholar] [CrossRef] - Davydov, A.S. Quantum Mechanics; Pergamon Press: Oxford, UK, 1965; Volume 1. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics (Second Edition); John Wiley & Sons: New York, NY, USA, 1975. [Google Scholar]
- Pauling, L.; Beach, J.Y. The van der Waals interaction of hydrogen atoms. Phys. Rev.
**1935**, 47, 686–692. [Google Scholar] [CrossRef] - Pauling, L.; Wilson, B.E.J. Introduction to Quantum Mechanics; Dover Publications, Inc.: Mineola, NY, USA, 1985; pp. 1–468. [Google Scholar]
- Raab, R.E.; de Lange, O.L. Multipole Theory in Electromagnetism; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Salam, A.; Thirunamachandran, T. A new generalization of the Casimir—Polder potential to higher electric multipole polarizabilities. J. Chem. Phys.
**1996**, 104, 5094–5099. [Google Scholar] [CrossRef] - Salam, A. Non-Relativistic QED Theory of the van der Waals Dispersion Interaction; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; The Johns Hopkins University Press: Baltimore, MD, USA; London, UK, 1996. [Google Scholar]
- Jenkins, J.K.; Salam, A.; Thirunamachandran, T. Retarded dispersion interaction energies between chiral molecules. Phys. Rev. A
**1994**, 50, 4767–4777. [Google Scholar] [CrossRef] [PubMed] - Szekeres, P. Linearized gravitation theory in macroscopic media. Ann. Phys.
**1971**, 64, 599–630. [Google Scholar] [CrossRef] - Szekeres, P. Gravitational fields in matter. In Relativity and Gravitation; Kuper, C.G., Peres, A., Eds.; Gordon and Breach Science Publishers: New York, NY, USA, 1971; pp. 305–308. [Google Scholar]
- Pinto, F. Rydberg atoms as gravitational-wave antennas. Gen. Relativ. Gravit.
**1995**, 27, 9–14. [Google Scholar] [CrossRef] - Pinto, F. Gravitational-wave response of parametric amplifiers driven by radiation-induced dispersion force modulation. In Proceedings of the Fourteenth Marcel Grossmann Meeting on General Relativity, Rome, Italy, 12–18 July 2015; Bianchi, M., Jantzen, R.T., Ruffini, R., Eds.; World Scientific: Singapore, 2017; pp. 3175–3182. [Google Scholar] [CrossRef]
- Tourrenc, P.; Grossiord, J.L. Modification du spectre de l’hydrogène atomique sous l’influence de champs de gravitation. Il Nuovo Cimento
**1976**, 32B, 163–176. [Google Scholar] [CrossRef] - Parker, L. One-electron atom in curved space-time. Phys. Rev. Lett.
**1980**, 44, 1559–1562. [Google Scholar] [CrossRef] - Pinto, F. Rydberg atoms in curved space-time. Phys. Rev. Lett.
**1993**, 70, 3839–3843. [Google Scholar] [CrossRef] - Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman and Company: San Francisco, CA, USA, 1970; pp. 1–1304. [Google Scholar]
- Schutz, B.F. A First Course in General Relativity; Cambridge University Press: Cambridge, UK, 2009; pp. 1–393. [Google Scholar]
- Price, R.H.; Belcher, J.W.; Nichols, D.A. Comparison of electromagnetic and gravitational radiation: What we can learn about each from the other. Am. J. Phys.
**2013**, 81, 575–584. [Google Scholar] [CrossRef] - McLachlan, A.D.; Gregory, R.D.; Ball, M.A. Molecular interactions by the time-dependent Hartree method. Mol. Phys.
**1964**, 7, 119–129. [Google Scholar] [CrossRef] - McLachlan, A.D. Retarded dispersion forces in dielectrics at finite temperatures. Proc. R. Soc. Lond. Ser. Math. Phys. Sci.
**1963**, 274, 80–90. [Google Scholar] - Thirunamachandran, T. Vacuum fluctuations and intermolecular interactions. Phys. Scr.
**1988**, T21, 123–128. [Google Scholar] [CrossRef] - Power, E.A.; Thirunamachandran, T. A new insight into the mechanism of intermolecular forces. Chem. Phys.
**1993**, 171, 1–7. [Google Scholar] [CrossRef] - Renne, M.J. Retarded van der Waals interaction in a system of harmonic oscillators. Physica
**1971**, 53, 193–209. [Google Scholar] [CrossRef] - Renne, M.J. Microscopic theory of retarded van der Waals forces between macroscopic dielectric bodies. Physica
**1971**, 56, 125–137. [Google Scholar] [CrossRef] [Green Version] - Goldstein, H.; Poole, C.; Safko, J. Classical Mechanics, 3rd ed.; Addison-Wesley: San Francisco, CA, USA, 2002; pp. 1–647. [Google Scholar]
- Hinshelwood, C.N. The Structure of Physical Chemistry; Oxford University Press: London, UK, 1951. [Google Scholar]
- Panofski, W.K.H.; Phillips, M. Classical Electricity and Magnetism, 2nd ed.; Addison-Wesley Publ. Co., Inc.: Reading, MA, USA, 1962; pp. 1–503. [Google Scholar]
- Shadowitz, A. The Electromagnetic Field; Dover Publications, Inc.: New York, NY, USA, 1975. [Google Scholar]
- Passante, R. Dispersion Interactions between Neutral Atoms and the Quantum Electrodynamical Vacuum. Symmetry
**2018**, 10, 735. [Google Scholar] [CrossRef] [Green Version] - Power, E.A.; Thirunamachandran, T. Dispersion forces between molecules with one or both molecules excited. Phys. Rev. A
**1995**, 51, 3660–3666. [Google Scholar] [CrossRef] - Zangwill, A. Modern Electrodynamics; Cambridge University Press: Cambridge, UK, 2013; pp. 1–977. [Google Scholar]
- Good, R.H.; Nelson, T.J. Classical Theory of Electric and Magnetic Fields; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Weber, J. General Relativity and Gravitational Waves; Interscience Publishers, Inc.: New York, NY, USA, 1961. [Google Scholar]
- Bimonte, G.; Calloni, E.; Esposito, G.; Rosa, L. Energy-momentum tensor for a Casimir apparatus in a weak gravitational field. Phys. Rev. D
**2006**, 74, 085011. [Google Scholar] [CrossRef] [Green Version] - Norte, R.A.; Forsch, M.; Wallucks, A.; Marinković, I.; Gröblacher, S. Platform for Measurements of the Casimir Force between Two Superconductors. Phys. Rev. Lett.
**2018**, 121, 30405. [Google Scholar] [CrossRef] [Green Version] - Pinto, F. A trapped dipolar BEC interferometry test of E = mc
^{2}. Int. J. Mod. Phys. D**2006**, 15, 2235–2240. [Google Scholar] [CrossRef] - Bimonte, G.; Born, D.; Calloni, E.; Esposito, G.; Il’ichev, E.; Rosa, L.; Scaldaferri, O.; Tafuri, F.; Vaglio, R.; Hübner, U. The Aladin2 experiment: Status and perspectives. J. Phys. Math. Gen.
**2006**, 39, 6153–6159. [Google Scholar] [CrossRef] - Allocca, A.; Bimonte, G.; Born, D.; Calloni, E.; Esposito, G.; Huebner, U.; Il, E.; Francesco, R. Results of Measuring the Influence of Casimir Energy on Superconducting Phase Transitions. J. Supercond. Nov. Magn.
**2012**, 25, 2557–2565. [Google Scholar] [CrossRef] [Green Version] - Ignat’ev, Y.G.; Zakharov, A.V. The reflection of gravitational waves from compact stars. Phys. Lett.
**1978**, 66A, 3–4. [Google Scholar] [CrossRef] - Li, N.; Torr, G. Gravitational effects on the magnetic attenuation of superconductors. Phys. Rev. B
**1992**, 46, 5489–5495. [Google Scholar] [CrossRef] - Klimchitskaya, G.L.; Mostepanenko, V.M. Recent measurements of the Casimir force: Comparison between experiment and theory. Mod. Phys. Lett. A
**2020**, 35, 2040007. [Google Scholar] [CrossRef] [Green Version] - Pinto, F. Efimov physics in curved spacetime: Field fluctuations and exotic matter. Int. J. Mod. Phys. D
**2018**, 27, 1847001. [Google Scholar] [CrossRef] - Pinto, F. Signatures of minimal length from Casimir-Polder forces with neutrons. Int. J. Mod. Phys. D
**2020**, 2043026. [Google Scholar] [CrossRef] - Pinto, F. The history of technology transfer of the Casimir effect and van der Waals forces: From exotic, weak, and undesirable to enabling, emerging, and irresistible. In Proceedings of the Atti del XXXIX Convegno Annuale Della SISFA, Pisa, Italy, 9–12 September 2019; La Rana, A., Possi, P., Eds.; Pisa University Press: Pisa, Italy, 2020; pp. 281–287. [Google Scholar] [CrossRef]
- Post, H.R. The Problem of Atomism. Br. J. Philos. Sci.
**1975**, 26, 19–26. [Google Scholar] [CrossRef] - Wheeler, J.A. From relativity to mutability. In The Physicist’s Conception of Nature; Mehra, J., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1973; Chapter 9; pp. 202–247. [Google Scholar]
- Pinto, F. Dispersion force engineering and next-generation spacecraft: Case studies in a nanoscale emerging enabling general-purpose technology. Materials Today. In Proceedings of the 17th International Conference on Nanosciences & Nanotechnologies (NN20), Thessaloniki, Greece, 7–10 July 2020. [Google Scholar]
- Hawkes, E.W.; Eason, E.V.; Christensen, D.L.; Cutkosky, M.R. Human climbing with efficiently scaled gecko-inspired dry adhesives. J. R. Soc. Interface
**2015**, 12, 20140675. [Google Scholar] [CrossRef] [Green Version] - Pinto, F. Mixed electric-gravitational Casimir-Polder potentials. In Proceedings of the 4th Symposium on the Casimir Effect, Saint Petersburg, Russia, 23–29 June 2019. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pinto, F.
Gravitational Dispersion Forces and Gravity Quantization. *Symmetry* **2021**, *13*, 40.
https://doi.org/10.3390/sym13010040

**AMA Style**

Pinto F.
Gravitational Dispersion Forces and Gravity Quantization. *Symmetry*. 2021; 13(1):40.
https://doi.org/10.3390/sym13010040

**Chicago/Turabian Style**

Pinto, Fabrizio.
2021. "Gravitational Dispersion Forces and Gravity Quantization" *Symmetry* 13, no. 1: 40.
https://doi.org/10.3390/sym13010040