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Abstract: The parallel development of the theories of electrodynamical and gravitational dispersion
forces reveals important differences. The former arose earlier than the formulation of quantum elec-
trodynamics so that expressions for the unretarded, van der Waals forces were obtained by treating
the field as classical. Even after the derivation of quantum electrodynamics, semiclassical considera-
tions continued to play a critical role in the interpretation of the full results, including in the retarded
regime. On the other hand, recent predictions about the existence of gravitational dispersion forces
were obtained without any consideration that the gravitational field might be fundamentally classical.
This is an interesting contrast, as several semiclassical theories of electrodynamical dispersion forces
exist although the electromagnetic field is well known to be quantized, whereas no semiclassical
theory of gravitational dispersion forces was ever developed although a full quantum theory of
gravity is lacking. In the first part of this paper, we explore this evolutionary process from a historical
point of view, stressing that the existence of a Casimir effect is insufficient to demonstrate that a
field is quantized. In the second part of the paper, we show that the recently published results about
gravitational dispersion forces can be obtained without quantizing the gravitational field. This is
done first in the unretarded regime by means of Margenau’s treatment of multipole dispersion forces,
also obtaining mixed potentials. These results are extended to the retarded regime by generalizing
to the gravitational field the approach originally proposed by McLachlan. The paper closes with
a discussion of experimental challenges and philosophical implications connected to gravitational
dispersion forces.

Keywords: dispersion potentials; phenomenology of quantum gravity; novel experimental methods;
epistemology; semiclassical methods

1. Introduction

The Casimir effect is quite typically described as “an empirically verified quantum
mechanical phenomenon involving an attractive force between two parallel uncharged
mirrors in vacuum that exists even at zero temperature” [1]. The core of Casimir’s original
idea [2], which, with some variation of detail [3], he consistently traced to an early conver-
sation with Bohr, is that a non-zero energy exists even in a vacuum. This is because the
Uncertainty Principle of quantum mechanics prevents all components of the electric and
magnetic fields to vanish identically at the same position in spacetime, so that contributions
to the total energy density from electromagnetic fluctuations are expected [4]. Such energy
is referred to as the zero-point energy (Nullpunktsenergie)—a concept that first emerged
from Planck’s “second theory” of the blackbody radiation in 1912 [5], then was famously
considered in that context by Einstein and Stern [6] and by Bohr himself [7], and was
finally extended to the electromagnetic field by Nernst [8] (for analyses of Nernst’s work
on zero-point energy see in [9–12]). The zero-point-energy exists also if two parallel plane
reflectors separated by a gap of width s are introduced. However, the discontinuities at the
boundaries cause the energy density to change as a function of the gap width. A relatively
simple calculation quickly shows that this leads to an attractive force, more correctly a
pressure, proportional to −h̄c/s4, between the two plates [13]), where h̄ and c are Planck’s
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constant and the speed of light in vacuum, respectively. This is now referred to as the
Casimir force.

As quantum mechanics plays a key role in these interpretations, scientists and philoso-
phers alike are presented with experimental confirmation of the Casimir force as evidence
of the quantum nature of the associated field, in this case, the electromagnetic field. Such a
point of view extends, more in general, to all electrodynamical dispersion forces, that is,
forces due to the frequency-dependent electromagnetic polarizability of the interacting
systems, whether they be macroscopic or microscopic. Despite the above matter-of-fact
description [1] quite representative of the literature in the field, a robust debate regarding
the logical relationship between electrodynamical Casimir forces and the principles of
quantum mechanics has long been part of the research landscape.

In recent years, the subject of dispersion forces between gravitationally polarizable
objects driven by spacetime fluctuations has attracted steadily increasing attention. Despite
close field theory methodological analogies, however, the developmental trajectory of this
research subfield has notably differed from that dealing with electrodynamical dispersion
forces. Such a different path has unfolded in the nearly total absence of a parallel debate,
thus leading to unquestioned claims that the detection of gravitational dispersion forces
would conclusively prove the quantum nature of gravitation, claims we wish to discuss in
this paper.

The plan for our analysis is as follows. In the following section, we review from
a historical perspective the vigorous debate about the relationship between quantum
atomic theory, quantum electrodynamics, and the existence of dispersion forces in both
the unretarded and retarded regimes. In particular, we recall heuristic approaches and
semiclassical theories leading to results indistinguishable from those obtained from the full
quantum electrodynamical treatment. As an illustration that these descriptions are far from
fruitless speculation, we mention and reference applications demonstrated to engineer
dispersion forces in classical fields for specific technological purposes. In the following
section (Section 3), we consider, again historically, developments leading to proposals
about the existence of dispersion forces due to the gravitational field. The emphasis is
on highlighting the fact that consideration of possible gravitational dispersion forces has
occurred in the complete absence of a debate as to whether gravitational field quantization
is necessary as a prerequisite for the existence of such forces, unlike what occurred in the
electrodynamical case.

Readers not interested in these arguments may want to skip directly to our com-
putational illustrations that gravitational dispersion forces can exist in the presence of
classical gravitation with quantized atoms. As a first step (Section 4), we recall London’s
treatment of dipole’s electrodynamical forces (Section 4.1) and Margenau’s extension of
such a formulation to multipole dispersion forces in the unretarded regime (Section 4.2).
Those expressions are then reformulated in the classical gravitational case and it is shown
that the recently published results obtained in linearized quantum gravity are immedi-
ately recovered (Section 5). New relationships, first suggested by Spruch on dimensional
grounds, are also explicitly derived for the mixed quadrupole–quadrupole and dipole–
quadrupole electric gravitational potentials, which are tens of orders of magnitude larger
than purely gravitational potentials (Section 8). The conclusions from this initial deriva-
tion are further strengthened by extending McLachlan’s theory of dispersion forces to the
gravitational case. For his purpose, we first recall McLachlan’s theory (Section 6), in which
the electromagnetic field is not quantized, and we show that it leads to the van der Waals
and Casimir–Polder expressions in the unretarded and retarded regimes, respectively
(Section 6.1). Then, restricting our treatment to the 1D case for succinctness, we consider
the extension of McLachlan’s approach to electric quadrupole dispersion forces (Section 6.2).
The formulation of the same theory in the gravitational case is straightforward, as sketched
out in Section 6.3.

We repeatedly stress throughout the paper that our efforts are not intended to support
speculation that the electromagnetic field is not quantized. Instead, our starting point is that
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the conclusion that the electromagnetic field must be quantized could not be drawn based
solely on the detection of dispersion forces. In fact, the existence of dispersion forces can
be accommodated by quantizing the internal degrees of freedom of atoms interacting via
classical electromagnetic fields. Therefore, the aim of this paper is to show that, analogously,
any successful detection of gravitational dispersion forces could not be used to conclude
that the gravitational field must be quantized. Quantized atoms interacting through a
classical (general relativistic) gravitational field exhibit gravitational dispersion forces
indistinguishable from those derived from linearized quantum gravity.

The challenging goal of detecting the gravitational equivalent of electrodynamical
van der Waals, Casimir, and Casimir–Polder forces in the laboratory has been the subject
of a few proposals, which are summarized in Section 7. The paper closes with a brief
mention of connections between the main topic and two related subjects. On the one
hand, the role played by dispersion forces within the philosophical idea of atomism is
recalled, particularly as it regards the meaning of “void” in the presence of fluctuations
of spacetime. On the other hand, some comments are provided about possible future
technological applications of gravitational dispersion forces.

2. The Quantum Structure of the Atom, Quantum Electrodynamics, and
Dispersion Forces

Historically, the first treatment of van der Waals forces between two hydrogen-like
atoms was attempted by Wang [14] and later correctly completed by Eisenschitz and Lon-
don [15]—indeed on the basis of the then newly developed principles of non-relativistic
quantum mechanics. Such early studies were carried out contemporaneously with, but in-
dependently of, efforts to assemble the framework needed to describe the electromagnetic
field in quantum mechanical language, the theory now referred to as quantum electrody-
namics (QED) [16]. As lucidly clarified by London [17], who introduced the term “disper-
sion” in this context, the van der Waals force is explained in non-relativistic quantum theory
as due to the existence of the zero-point-energy of perturbed harmonic oscillators, which
schematically represent the interacting atoms. On the other hand, the electromagnetic
field is assumed to be classical. Further developments, such as the calculation of atomic
multipole effects, were built upon this same non-relativistic approach [18,19].

Within just a few years, experimental data on lyophobic colloids [20] clearly demon-
strated that the decay of van der Waals potentials at large particle separations is more
rapid than predicted by the London treatment. Overbeek provided a suggestive, albeit
only intuitive, explanation based on the effect of the finiteness of the speed of light, which,
at large interparticle distances, would cause interacting classical resonators to vibrate out-
of-phase thus degrading their mutual attraction [21,22]. This concept brought to the fore
the critical importance of retardation and led Casimir and Polder to attacking the problem
of interatomic forces by means of the early tools of QED [23,24]. As recalled by Casimir,
he followed up on this result by considering the attraction of two perfectly conducting
neutral plates separated by a gap in terms of zero-point-energy of the electromagnetic field,
so that “The problem in quantum electrodynamics is then reduced to a problem in classical
electrodynamics” [25]. This approach, which Casimir humbly but entertainingly referred
to as “Poor Man’s QED” [26,27], led to his important discovery [2].

One important attribute of the “two parallel uncharged mirrors” to complete the
above initial definition of the Casimir effect is that they are assumed to be perfect reflectors—
clearly an extreme idealization. The strategy available to deal with intermolecular forces in
real materials had been highlighted at least as early as in Einstein’s very first published
paper, in which he had been “. . . guided by the analogy with gravitational forces” (“Ich liess
mich dabei von der Analogie der Gravitationskräfte leiten” [28]. Obviously, Einstein,
writing even before the special relativity theory, is referring to Newtonian gravitation,
which he would finally revise with his general relativity theory, in which gravitation is not
trivially additive) [29]. Therefore, the van der Waals force between one atom and a slab or
between two slabs was calculated by augmenting the theory by the ad hoc assumption of
dispersion force additivity and by carrying out pairwise force summations in the continuum
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approximation [20,30–32]. However, it became quickly apparent that, unlike the case of
Newtonian gravitation, additivity must actually be considered with suspicion. For instance,
Axilrod and Teller intriguingly proved that each of three isolated atoms interacting via
the unretarded van der Waals–London force not only do not experience forces trivially
given by the pairwise sum, but can even mutually repel simply depending on their specific
geometric arrangement [33].

Both the problem of retardation and of additivity in real materials, regardless of
scale or distance and including absorption, were eventually addressed by Lifshitz through
the introduction of a random electromagnetic field into the Maxwell equations [34,35].
Although the status of the Lifshitz theory in relationship to the fundamental principles
of quantum mechanics has raised long-standing questions, as shown in the references
above, the quantitative success of the resulting equations for the dispersion force between
polarizable objects in explaining experimental data from a widespread variety of systems
has been remarkable [36–39].

It is crucial to what follows that London’s calculation of the near-range van der Waals
force assumes a true vacuum, that is, “. . . a state with all physical properties equal to
zero” [40], within which to consider the classical electrostatic interaction of two instan-
taneous dipoles described by non-relativistic quantum mechanics. On the other hand,
the treatment of the long-range potential presented by Casimir and Polder is explicitly
rooted in the concept of the zero-point-energy of the quantum vacuum [41]. This seems
to imply, as is often stated, that the existence of retarded interactions cannot be explained
outside the framework of quantum field theory. However, this is not the case. Indeed,
somewhat in the path Overbeek had envisioned, theories leading to the correct retarded
potentials have been developed “in spite of having used the nonretarded Schrödinger equa-
tion” [42] to treat the interacting atoms but retaining the electromagnetic field as classical.
As the quantum nature of the electromagnetic field appears beyond doubt on independent
considerations, such semiclassical endeavors are at times presented self-deprecatingly, in a
manner mindful of, or perhaps in order to pre-empty, Osiander’s opinion that, for the
sole purpose of saving the phenomena, “. . . these hypotheses need not be true nor even
probable . . . ” [43] (“Neque enim necesse est, eas hypotheses esse veras, imo ne verisimiles
quidem . . . ” [44]). For instance, in a short pedagogical article aimed at illustrating the
basic idea of the Casimir effect, Kleppner instead discusses, “delightfully” [45], a one-
dimensional version [46] of London’s unretarded model of interacting harmonic oscilla-
tors [17]. The obvious extension of that approach to include full retardation—the actual
Casimir effect—is disposed of as to “flog the argument beyond the point of diminishing
returns” [47].

One recurring apologetic argument for all such efforts is that pedagogy can take
advantage of “. . . the considerable simplification in the mathematical aspects of the frame-
work over the approach based on quantum electrodynamics” [48]. A slightly more am-
bitious perspective holds that “The various interpretations of the dispersion effect are
aimed at minimizing the quantum theoretical effort” but “It is one of the objectives of the
quantum electrodynamics procedure to check the errors and limits of these semiclassical
approaches” [42].

Along these lines, additional motivation was provided by Casimir and Polder them-
selves in their early speculation that “. . . it might be possible to derive these expressions,
perhaps apart from the numerical factors, by more elementary considerations. This would
be desirable since it would also give a more physical background to our result, a result
which in our opinion is rather remarkable” [24]. This goal was adopted by McLachlan,
who explained: “In one sense the theory of molecular attractions is now complete, but there
is still a need for an elementary discussion which gives better physical insight. The aim of
this paper is to find the dispersion force between two molecules by a new method which
uses elementary quantum mechanics and assumes almost no knowledge of quantum field
theory” [49]. Indeed, Margenau, commenting in the aftermath of such work, stated that
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“The approach just considered, for which we are indebted to McLachlan, is essentially
classical, the only quantum mechanics occurring in the definition of the polarizability” [50].

At the far end of the spectrum, one finds efforts not just aimed at recovering known
results with a less onerous mathematical apparatus for reasons of succinctness or insight
but claiming to do so, regardless of complexity, in order to show that the nature of the
electromagnetic field is not fundamentally quantum mechanical. In this view, referred
to as “stochastic” or “random” electrodynamics (SED), there actually exists a fluctuating
zero-point electromagnetic field but such an object is completely classical and it appears
as a solution of the homogeneous wave equation for the potential vector [11]. As pointed
out by Marshall [51,52] and Boyer [53], the theory is Lorentz-invariant, and it has been
shown not only to recover the major expressions from “standard” dispersion force theory
but also—stimulated by a question from none other than Casimir himself—to lead to the
earliest prediction of a repulsive Casimir force between a perfectly electrically conducting
and a perfectly magnetically permeable slab [54] (see also in [55]).

The fact that this semiclassical approch and “standard” QED calculations lead to the
same expressions was stressed by Spruch, who observed: “Why vacuum fluctuation argu-
ments worked in the past in the problems to which they were applied is, to our knowledge,
not completely understood, but the simplicity of the approach gives it considerable appeal,
as a means of providing physical insight into known results and as a means of suggesting
new results” [56]. Indeed, Spruch adds that “it is not necessary to go to the trouble for
almost all of the work has been done, and we simply note down an extension of a version
given by Boyer”. Interestingly, the result used therein had been obtained by Boyer by
pointing out that “we may regard the fields equally well as classical fields subject to a
random walk or as quantum fields” [53]. Several years later, Spruch presented these argu-
ments in a remarkable pedagogical article written for Physics Today to illustrate that “. . . the
essential idea is to proceed entirely classically. . . until that last step . . . in which we quantize
the energy of the modes of vibration of the electromagnetic field” [57]. This approach
yields a completely classical expression for the dispersion energy for any arbitrary specific
energy density, and to the intriguing comment that such is “. . . a result Maxwell could
have derived, and perhaps did”. (The reasons that this “counterfactual history” statement
cannot be considered realistic were explored in [22]) Finally, Spruch states that “[T]he
quantum version follows immediately on making E0 the field of vacuum fluctuations . . . in
that case the energy in a mode of the field is simply . . . 1

2 h̄ω . . . ”. We must notice, however,
that whereas that “last step” is attributed the actual meaning of field quantization by
Spruch, within the SED framework the fields remain classical and Planck’s constant “. . . h̄
is regarded as nothing more than a number chosen to obtain consistency of the predictions
of the theory with experiment” [11].

Predictably, a classical electromagnetic zero-point field is perceived as a highly con-
troversial proposal [3]—indeed Boyer noted that “some readers . . . are distressed, even in-
dignant at the idea . . . ” [58]—and Milonni concluded that “In spite of the successes of
SED, it cannot at this time be considered a serious alternative to QED” [11]. Such peremp-
tory rejection, supported by the argument that, for instance, “no classical theory of the
electromagnetic field can account for such experimentally observed phenomena as the
photon polarization correlations in a cascade radiative decay of atomic states” [11], has,
however, not resulted in the disappearance of the SED approach. From the theoretical
standpoint, this is continues to be presented as being due, in a typical literature example,
to “computational advantages” [59], couched in Osiander’s language of profuse apology
despite excellent agreement with experimental data, confessing that the purpose “. . . is not
to propound some rival to QED” [59].

Even more importantly, continued pursuit of the SED standpoint eventually inspired
novel experimental physics and engineering applications of the Casimir effect. One devel-
opment was motivated by a description of dispersion forces in terms of the net radiation
pressure of all modes of the zero-point-field first suggested by Casimir in his landmark
publication [2], quoted verbatim much later by Debye [9] (see in [60], Note 5), and fully ex-
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plored by Gonzáles [61] and, finally, by Milonni [11,62]. Despite some commentary critical
of this famously lucid and oft-cited interpretation, delivered by Barton in a section tellingly
entitled “Exorcism” [63], the prediction of the existence of forces between macroscopic
boundaries does not appear to demand a quantum origin of the field, which can thus be
classical. Therefore, both Boyer’s SED papers and Milonni’s more recent radiation pressure
formulation are consistently cited as cornerstones in theses and articles leading to the
successful detection of the acoustic Casimir effect [64–66], that is, “the force between two
plates in a homogeneous, isotropic, acoustic field” [67]. The development of this research
subfield led to a deeper understanding of the connection between the detailed features
of the random vibration spectrum with the Casimir force as a function of the gap width
between the two plates. Whereas, as we stated above, in the electromagnetic case such
spectrum is uniquely determined by the requirements of Lorentz invariance, in the acoustic
case it can be arbitrarily set by the experimenter.

The outcome of these studies was the mathematical proof that a narrow band random
noise spectrum may result in large oscillations of the force with distance, later indepen-
dently re-discovered by Ford in the electromagnetic case [68], which finally led to the first
experimental detection of repulsive acoustic Casimir forces [66,67]. The remarkable possibil-
ity to tailor such interactions in intensity and sign suggested that engineering the noise spec-
trum might lead to novel applications in micromanipulation and particle levitation. More
recently, this interesting result has led to the theoretical suggestion [69] that high-frequency
noise fields might represent a tool to control stiction, the phenomenon responsible for non-
linearities and a failure mode in microelectromechanical systems (MEMS) [70]. The Casimir
effect with classical random fields—referred to by some as the “analog” Casimir effect—
was further demonstrated by measuring the force between two vertically plates partially
submerged in a dish containing a liquid (This interesting experiment has been presented as
indirect support of the veracity of historical reports of a “maritime” Casimir effect, that is,
the force attraction of two side-by-side ships in a rough sea [71]. Despite the correctness of
the experiments reported in [72], the present author has shown [73] that there exists no basis
to believe that the drawing shown in [71] suggests that “It was believed in the days of the
clipper ships that . . . two vessels at close distance [in a strong swell] will attract each other”.
In fact, as also remarked by a reader in a letter to the Editor [74], the traditional belief was
the opposite, that is, that ships in a completely flat sea attract. However, the captions of
the two figures in the historical source, one showing rough seas and other one flat calm,
were inexplicably swapped by the author of [71]) excited by a shake table [72].

As a final example of productivity of the SED point of view, again represented by cita-
tion of Boyer’s papers as the logical starting point, we mention the very recent experiments
aimed at engineering dispersion forces by means of arbitrary fluctuating electromagnetic
fields in optical nanoparticle manipulation applications [75]. This remarkable work has
generated renewed impetus in long standing efforts to shape dispersion forces by radi-
ation [76] resulting in applications in bacterial screening [77] and in further progress in
“gravitational-like” interactions [78–80] and “mock gravity” [81].

We conclude these introductory remarks by quoting leading research protagonists
implicitly or explicitly exposing the need to accept the limitations presented by using forces
between polarizable particles as a tool to ascertain the ultimate nature of the fields. For in-
stance, the discoverers of “optical binding” offered the following commentary applicable
to the issue at hand.

“Finally we note that many readers of this journal view forces between elementary
particles of nature as originating from the exchange of virtual quanta of fields
to which they are coupled. The induced interaction discussed in this paper fits
nicely into that scheme, but with real quanta being exchanged. We wonder
whether other particles and fields may be substituted for our dipoles and light,
yielding analogous effects in other domains of physics” [82].

An obvious illustration of this argument is the view of the Casimir effect as due to radiation
pressure of a zero-point-field photons gas—an interpretation that cannot differentiate
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between real or virtual photons. Speaking more broadly, DeWitt has remarked that “There
must be nearly two dozen ways of calculating the Casimir effect” [83]. Indeed, approaches
as diverse as QED and SED lead to the same expressions for dispersion forces in various
regimes, thus suggesting that the existence of dispersion forces is not a valid tool to
determine whether a field is quantized. This was explicitly noted by the researcher who
designed the first modern experiment to accurately test the predictions of the Lifshitz
theory [84], S. K. Lamoreaux, who stated: “There are physical phenomena that truly require
a quantization of the electromagnetic field for their explanation; the Casimir force is not
among these phenomena, because the predictions based on different points of view are
identical” [85].

As is tradition, the present author also proffers his own apology of quantum electro-
dynamics, which has in fact never been falsified and is consistently hailed, with reason,
as possibly the most successful physical theory ever devised by the human mind [86].
However, special care must be used as we attempt to employ dispersion forces to draw
conclusions about the nature of “other particles and fields”. In this sense, it is appropri-
ate to extensively quote some words by Richard Feynman in his Nobel Prize acceptance
speech [87]:

“Physical reasoning does help some people to generate suggestions as to how
the unknown may be related to the known. Theories of the known, which are de-
scribed by different physical ideas may be equivalent in all their predictions and
are hence scientifically indistinguishable. However, they are not psychologically
identical when trying to move from that base into the unknown. For different
views suggest different kinds of modifications which might be made and hence
are not equivalent in the hypotheses one generates from them in ones attempt to
understand what is not yet understood. I, therefore, think that a good theoretical
physicist today might find it useful to have a wide range of physical viewpoints
and mathematical expressions of the same theory (for example, of quantum
electrodynamics) . . . ”

It may appear surprising to see an extraordinarily objective physicist as Feynman
ponder about such concepts as “psychologically identical” ideas—a criticism he seems to
pre-empty at the onset by stating that he just wants “to make the lecture more entertaining”.
However, considering that Julian Schwinger, seated in that same audience that day, would
later refer to the Casimir effect as “One of the least intuitive consequences of quantum
electrodynamics” [40], Feynman’s warning must be taken very seriously as we move from
the known, QED, to the unknown, the ultimate structure of spacetime.

3. Gravitational Dispersion Forces

It is a puzzling fact in the history of this subfield that no treatment of gravitational
dispersion forces was, to the best knowledge of this author, ever published till very recently
although, for instance, the non-relativistic regime does not require a treatment remarkably
more complex than that developed by London. This silence was not due to a lack of
sophisticated theoretical tools. The calculation of classical (i.e., non-quantum) corrections
to the gravitational force upon a charge distribution in various gravitational fields was
pursued intermittently, often without awareness of past results [88], as the first attempt by
Enrico Fermi to study electrostatics within the then-novel theory of general relativity while
at at the Scuola Normale Superiore at Pisa [89].

Even as QED was being developed, the problem of quantizing linearized gravity
had also emerged [90–92], most prominently, in the pioneering works of Rosenfeld [93]
and Bronstein [94]. The results by the latter are remarkable from our perspective even
in the present day because, as pointed out by the editors [95] of his recently reprinted
work [96], Bronstein even addressed the presence of a gravitational zero-point-energy and
implemented the proper operator ordering [11] needed to avoid it (This now famous paper
was Bronstein’s PhD dissertation, presented in 1935. He was arrested in August 1937
during the Great Purge, then tried, sentenced, and shot on the same day in a Leningrad
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prison on 18 February 1938 [91,97]). His results, achieved at a remarkably early stage
in the exploration of the challenges of a theory of quantum gravity and “Published in
German in a journal inaccessible today” [95], remained relatively unknown. Indeed,
as late as 1992, Gorelik still found the need to openly contradict Steven Weinberg’s taking
“liberties with history” [90] for rashly awarding to Planck [98] priority in identifying the
“inconsistency between quantum mechanics and general relativity”, an achievement which
Gorelik attributed to Bronstein.

In the several decades that followed, corrections to the Coulomb and post-Newtonian
potentials, as well as mixed potentials, were derived both within classical general rela-
tivity and quantum field theory frameworks [99–104] (the contemporary state-of-the-art
is reviewed in [105–107]). The relatively late development of the gravitational potential
corrections was explicitly acknowledged by Feinberg, Sucher, and Au as late as 1989:
“Two-graviton exchange has also been studied in some approximations . . . but, a general
expression for the potential arising from this exchange, similar to that . . . for two-photon
exchange between charges has, to our knowledge, not been derived” [108]. Specifically
regarding corrections to the Coulomb potential, the same authors observe “It is interesting
to note that the r−2 term is independent of Planck’s constant. Indeed, this term can be
obtained in a purely classical treatment of electrodynamics . . . This is not the case for the
r−3 term”. It is a further demonstration of the tortuous history of the subject that the
classical r−2 term had already been exhibited by Berends and Gastmans in 1976 [100] but
was recognized by them, “in proof”, as having being published by Cécile and Bryce DeWitt
as early as 1964 [99].

As far as the quantum corrections to the gravitational as well as the mixed potentials
(∝ r−3), remarkably early comments are found in the aforementioned paper by Spruch [57]
and reiterated in a later review chapter on Casimir forces, also of a pedagogical nature [109].
For instance, after having obtained the order of magnitude of the correction to the Coulomb
potential, Vee ∼ h̄e4/c3m2r3, Spruch instructs the reader: “To obtain the gravitational
analog of the electron–electron interaction, replace both factors of e2 by Gm2; to obtain the
gravitational-electromagnetic interference term in the interaction, replace only one factor
of e2 with Gm2”. As noted later, as this mixed contribution is linear in G, it is “much larger
and more interesting” (see in [57], Equation (6), box on p. 42, and p. 43; see also in [109],
p. 28). However, having come so close to the subject of dispersion forces in gravitationally
polarizable systems, Spruch walks away from it with the justification that “. . . there is
no gravitationally neutral system and therefore no gravitational analog of the electrically
neutral atom . . . ”.

An element crucial to the focus of the present paper was added to the debate by
J. P. Dowling in a letter written in response to Spruch’s article in Physics Today [110]. Dowl-
ing reminded readers that, as we repeatedly mentioned above, there exist other points of
view than explaining the existence of retarded dispersion forces by coupling of the interact-
ing systems with the electromagnetic zero-point fluctuations, such as the Lifshitz theory [34]
and the source theory by Schwinger, DeRaad, and Milton [40]. To these, he added yet
another framework, that is, the “self-field approach” in which no second quantization is
carried out, as proposed by Barut [111,112] and pursued by him and his collaborators,
including J. F. Van Huele [113] and Dowling himself [114,115]. In the apologetic tone typi-
cal of authors straying from the standard theory, Barut and Dowling responded by citing
the facts: “If a semiclassical theory is defined as a theory which is not second quantized,
then self-field QED has been quite a successful semiclassical theory (at least to order α) in
accounting for quite an array of phenomena thought to require at least the second quantiza-
tion of the radiation field for their explanation” [115]. Among such phenomena, were also
the “long-range Casimir–Polder van der Waals forces near boundaries” [114]. The obvious
consequence of such observations is, once again, that if the existence of electrodynamical
dispersion forces does not demand second quantization but can be correctly described
within a semiclassical theory, neither does the existence of gravitational dispersion forces.
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In the last forty years, the subject of dispersion forces involving the gravitationally
field has been slowly, and rather haphazardly, rediscovered. Among earliest studies in
this phase were calculations of the gravitational Casimir energy in very specific contexts of
cosmology and field theory [116–118]. As late as 1993, Spruch had dismissed the problem
stating: “We have been concerned almost exclusively with electromagnetic effects but it
is amusing to consider gravitational effects, and it is trivial to do so” [109]. Apparently
unaware of Spruch’s assessment, Panella and Widom wrote, shortly thereafter, that “. . . to
the best of our knowledge, the study of long range gravitational interactions between
massive bodies (e.g., calculation of gravitational retarded static potentials) has not yet
been undertaken”. In their article, these authors presented possibly the earliest detailed
calculation of gravitational dispersion forces—“a new finite effect of linearized quantum
gravity namely, the retarded (Casimir) potential of a test mass interacting with a condensed
matter system” [119]. Disappointingly, their result—the retarded gravitational potential
between a point mass and an extended mass distribution found by an approach that
parallels that used to analyze the analogous electrostatic problem [120]—remained virtually
uncited till 2017.

Approximately two decades after Panella and Widom, the problem reemerged from
two independent directions. On the macroscopic scale, the original motivation was pro-
vided by theoretical speculation—tempered by extreme skepticism in the absence of any
experimental confirmation—that superconductors might act as nearly-ideal high frequency
gravitational wave reflectors, thus opening the door to a new field of optics [121–124].
Following a suggestion by Bouwmeester, reported by Minter et al. [125], the possibility of
gravitational wave reflection led to a treatment of the gravitational Casimir effect (Impor-
tantly, Casimir’s approach was later explicitly mentioned by Sakharov (reprinted in [126])
in his theory of “induced gravity” [127]. Although effects connected to fluctuations in
curved spacetime are sometimes referred to as a “gravitational Casimir effect” [128], in this
paper, we consider gravitation as a fundamental, and not an emergent, interaction) analo-
gous to that of the Lifshitz theory in QED [129,130]. Very shortly thereafter, and without
any reference to the results by Quach [129,130] in the macroscopic regime, the computation
of the gravitational van der Waals and Casimir–Polder potentials appeared, carried out
by means of quantum field theoretical methods by Ford, Hertzberg, and Karouby [131],
confirmed a few months later by Wu, Hu, and Yu [132]; Hu and Yu [133]; and Holstein [134].

On the one hand, the macroscopic scale results [129,130] have stimulated a justifiably
lively debate as to whether a hypothetical detection of such a gravitational Casimir effect
would in fact represent a conclusive confirmation of the quantum nature of
spacetime [22,60,135–138]. On the other hand, the microscopic scale calculations have
been accompanied by a unanimous consensus on the part of those who carried them out
that any experimental confirmation of those predictions would reveal a signature of the
quantum nature of the gravitational field. Consider the following examples of matter-of-fact
commentary provided regarding the first black hole merger detection, announced within
the same time frame as the above results [139], and gravitational dispersion forces. Holstein
forcefully stated that “The recent observation at LIGO of gravitational radiation has veri-
fied the existence of gravitons and has emphasized the importance of studying processes
involving their interactions” [134]. Ford and collaborators sweepingly concluded that their
own work “. . . is a rare, precise, and definite prediction of quantum gravity, independent of
the details of its UV completion . . . (analogous to the electromagnetic Casimir–Polder and
London–van der Waals forces) . . . ” [131]. Along these lines, Wu, Hu, and Yu introduced
their calculations stating that “Although a full theory of quantum gravity is absent, one can
still use linearized quantum gravity to find quantum gravitational corrections to classical
physics which an ultimate quantum gravity theory must produce at low energies” [132].
Finally, Hu and Yu commented that “One naturally expects that, if gravity has a quantum
nature, it should also generate Casimir-like forces” [133].

As must appear obvious in light of the facts we recalled so far, all such strong claims
deserve careful analysis to avoid logical pitfalls. For instance, as we have repeatedly seen,
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Casimir forces are also predicted by theories without second quantization and even with
entirely classical fields [140,141]. Therefore, a non-quantum gravitational field should
still very much be expected to generate Casimir forces. Furthermore, in electrodynamics,
one would find it obviously untenable to state that “the observation of light verifies the
existence of photons”. Indeed, Dev and Mazumdar voiced the opinion that “The LIGO
detection as such does not confirm whether the observed gravitational wave is classical or
quantum” [142].

From the methodological standpoint, as the present author has previously discussed [60],
the adoption by Ross and Moreau of the SED mathematical tools developed by Boyer to
carry out an analogous study of “stochastic gravity” [143] is neither less rigorous nor less
promising than far more popular linear quantum gravitational methods. For instance,
in addition to providing a useful framework to treat gravitation approaching the Planck
scale, the possibility must be examined that contamination of gravitational dispersion force
measurements [60] might occur from an as yet undetected classical gravitational stochastic
field background of cosmological and astrophysical origins [144–146].

In summary, the historical evidence has shown that the developmental trajectory of
the quantum gravity research subfield intriguingly differed from that of QED. Whereas at
least half-a-century of extensive analysis in the electrodynamical domain established that
“. . . the Casimir effect reveals nothing conclusive about the nature of the vacuum” [147],
claims that “If gravity truly has a quantum nature, then gravitational waves should also
generate Casimir-like forces” [135] were left largely unchallenged.

In the remainder of this paper, we discuss some examples of calculation of gravitational
dispersion forces carried out assuming that the gravitational field is classical.

4. Unretarded Higher Multipole Electrodynamical van der Waals Forces

The computational strategy adopted below is part of the ongoing program by this au-
thor to bring computer algebra system (CAS) technology to bear in attacking prohibitively
complex Casimir force problems [22,148]. This approach is particularly effective when
generalizing computations to systems in which simplifying symmetries may be lost, as in
the case of electrodynamical dispersion forces in the presence of arbitrary gravitational
fields [88], to avoid errors due to very extensive algebraic calculations or to identify errors
in the published literature, as well as for pedagogical reasons. In order to demonstrate the
algorithm, first we verify several well known expressions for the generalized electric multi-
pole van der Waals potential by means of the Mathematica™ system (v. 11.3.0.0). Second,
we proceed by adapting this approach to compute the gravitational van der Waals potential
expressions. Finally, we report on the explicit calculation of the mixed electric-gravitational
potentials in the unretarded regime.

4.1. Margenau’s Algorithm: London Potential

The interatomic London potential [15,17] will be calculated by the procedure devel-
oped by Margenau [18], who first computed the quadrupole contributions to the van der
Waals interatomic forces on Frenkel’s suggestion. This is summarized here for convenience.
Let us consider the Coulomb potential (Gaussian units), V(r) = e/|r− r0|, at r (components
xi) due to a proton of charge e = +|e| placed at r0 (components xi

0). The total potential Vpe
at r due to this proton and to its atomic electron of charge −e, placed at a position r1 away
from the proton is, to second order in the components xi

1 = xi − xi
0 (index summation

convention is used) and eventually setting r0 = 0:

Vpe(r) =
e
r
− e

r
+ e
(

xi
1

∂

∂xi

)(1
r

)
+ . . . , (1)

where ∂/∂x = −∂/∂x0. Let us now place at second atom with proton at r and electron at r2
from the proton. The classical dipole–dipole potential energy of this atom in the potential
Vpe(r) is, also to first order in xk

2:
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Wdd(r1, r2, r) = eVpe(r)− eVpe(r)− e
(

xk
2

∂

∂xk

)
Vpe(r) + · · · = −e2

(
xi

1xk
2

∂

∂xi
∂

∂xk

)(1
r

)
. . . . (2)

By implementing the above steps in Mathematica, and by choosing r = (R, 0, 0), we find

Wdd(r1, r2, R) = − e2

R3 (2x1
1x1

2 − x2
1x2

2 − x3
1x3

2) , (3)

which is the classical perturbing field used by London. As is well known [18,149], the cal-
culation next proceeds to obtain a good approximation of the expression for the van der
Waals force by evaluating the following six-dimensional integral,

UvdW(R) ' − 1
2EI

∫
V1

∫
V2

φ∗1,0,0(r1)φ
∗
1,0,0(r2)W2

dd(r1, r2, R) φ1,0,0(r1)φ1,0,0(r2) dr1 dr2 , (4)

where EI is the atomic ionization energy EI = e2/2a0 and a0 = h̄2/mee2 is the Bohr radius
and the normalized ground state wave function φ1,0,0 is:

φ1,0,0(r) =
e−r/a0√

a3
0π

. (5)

The elementary process consists of considering the symmetry properties of the in-
tegrals of the 6 terms produced by squaring the classical energy at Equation (3) and
recognizing that some vanish while all others are identical to one another. Here, instead,
we proceed by brute force as all such integrals are elementary and can be computed by
Mathematica in ∼1 s of CPU time on a typical laptop. With the above approximations,
one finds the standard expressions:

UvdW(R) = −
3a4

0e4

EI R6 = −
6a5

0e2

R6 . (6)

This quantity can be expressed in terms of < 1, 0, 0|r2|1, 0, 0 >= r2
1,0,0 = 3a2

0, so that
we can finally write:

UvdW(R) = −
e4(r2

1,0,0)
2

3EI R6 , (7)

which is the expression given by Margenau (see in [18], Equation (8) and in [50], p. 24).
Further expressions of this result useful for comparison with the literature can be obtained
by writing the square of the norm of the ground state dipole expectation value from the
result above as ||µ1,0,0||2 = 3e2a2

0, so that

UvdW(R) = − (||µ1,0,0||2)(||µ1,0,0||2)
3EI R6 , (8)

which agrees with the complete expression at Equation (1.1) of the work in [150]:

UvdW(R) = − 2
3R6 ∑

r,s

||µ0,r(A)||2||µ0,s(B)||2
Er,0 + Es,0

, (9)

in the approximation in which one only retains the ground state contribution of two
identical atoms, A and B. Finally, let us write the electric dipole polarizability from the
Kramers–Heisenberg formula [11,150,151]:

α
(1)
E (ω) =

2
3 ∑

r

Er,0||µ0,r||2

E2
r,0 − (h̄ω)2

. (10)
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In the static limit for ω → 0, again only considering the contribution of the ground
state and by using the results above, we find the classical static dipolar polarizability,
α
(1)
0,E = 4a3

0 [11,152], and we obtain another standard expression:

UvdW(R) = −
3EI(α

(1)
0,E)

2

4R6 . (11)

4.2. Margenau’s Algorithm: Quadrupole van der Waals Forces

The next objective to validate our approach is to generalize the above procedure to
higher multipoles by first expanding Vpe(r) to second order at Equation (1):

Vpe(r) = e
(

xi
1

∂

∂xi −
1
2

xi
1xj

1
∂

∂xi
∂

∂xj

)(1
r

)
+ . . . . (12)

Therefore, the electrostatic potential energy of the two atoms is

Wdd(r1, r2, r) = −e
(

xk
2

∂

∂xk +
1
2

xk
2xl

2
∂

∂xk
∂

∂xl

)
Vpe(r) + . . .

= −e2
(

xk
2

∂

∂xk +
1
2

xk
2xl

2
∂

∂xk
∂

∂xl

)(
xi

1
∂

∂xi −
1
2

xi
1xj

1
∂

∂xi
∂

∂xj

)(1
r

)
. (13)

By implementing these expansions in Mathematica and again choosing r = (R, 0, 0),
we obtain the sum of three polynomials proportional to 1/R3, 1/R4, and 1/R5, where
the first of course recovers the dipole–dipole potential energy seen above. Squaring this
quantity to obtain Wdd(r1, r2, R) leads to a polynomial that Mathematica measures as having
229 terms. The 6-dimensional integration shown at Equation (4), carried out in ≈ 180 s of
CPU time, yields the following van der Waals potential,

UvdW(R) = −
3a4

0e4

EI R6 −
135a6

0e4

2EI R8 −
2835a8

0e4

4EI R10 = −
6a5

0e2

R6 −
135a7

0e2

R8 −
2835a9

0e2

2R10 , (14)

coinciding with the results by Margenau [18,50] and Pauling [153] (In Equation (47.7) [154],
the coefficient of the term in 1/R10 is given as 1416 instead of 1417.5). Margenau also
expresses this result [18] in terms of the quantity < 1, 0, 0|r4|1, 0, 0 >= r4

1,0,0 = 45
2 a4

0 and of
r2

1,0,0 already found above:

UvdW(R) = −
e4(r2

1,0,0)
2

3EI R6 −
e4(r2

1,0,0r4
1,0,0)

EI R8 −
7e4(r4

1,0,0)
2

5EI R10 . (15)

Finally, let us express this result in terms of the dipole moment found above and of
the traceless quadruple moment tensor defined as [150,155–157]

Qij = −
e
2!

[
xixj − 1

3 r2δij

]
(16)

Computing the expectation values < 1, 0, 0||Qij|2|1, 0, 0 > by means of Mathematica,
the square of the Frobenius norm [158] of the ground state traceless quadruple moment
tensor can be obtained:

||Q||2F ≡∑
i

∑
j
< 1, 0, 0||Qij|2|1, 0, 0 >=

15
4

a4
0e2 . (17)

Let us now use this result in the quadrupole-quadrupole, 1/R10 term at Equation (14),
indicated as V22(R) in [150]:

V22(R) = −
2835a8

0e4

4EI R10 = − 504
5R10

(||Q||2F)(||Q||2F)
2EI

, (18)
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in agreement with Equation (1.3) of the work in [150]. By now using Equation (17) and the
norm squared of the ground state dipole expectation, ||µ1,0,0||2 = 3e2a2

0, we can rewrite the
dipole-quadrupole, 1/R8 term at Equation (14), indicated as V12(R) in [150], as

V12(R) = −
135a6

0e4

2EI R8 = −135
R8

1
2EI

4
15

(||Q||2F)
1
3
||(µ1,0,0||2) = −

12
R8

(||Q||2F)(µ1,0,0||2)
2EI

, (19)

which indicates the factor of 3 in front of the summation at Equation (1.2) of the work
in [150] should be 12.

Finally, let us express these results in terms of the static dipole (α(1)0,E = 2
3 ||µ0,r||2/Er,0)

and static electric quadrupole polarizabilities, by using the standard expression for the
latter (i.e., see Equation (6.5) in [159]), where µ0,r and Er,0 are the transition moments and
the transition energies, and again only considering the ground state contribution [150]:

α
(2)
0,E =

1
5 ∑

r

Er,0||Q||2F
E2

r,0 − (h̄ω)2
−→ 2

(||Q||2F)
EI

. (20)

In summary, we find, including also Equation (21) rewritten in the notation of the
work in [150]:

UvdW(R) = V11(R) = −
3EI(α

(1)
0 )2

4R6 ; (21)

V12(R) = −
9EIα

(1)
0 α

(2)
0,E

R8 ; (22)

V22(R) = −
504EI(α

(2)
0,E)

2

40R10 . (23)

Although in the literature all such results are obtained from rigorous calculations
within the framework of QED, it is also pointed out, without proof, that “The near-zone
result . . . may also be obtained with second-order perturbation theory and the electrostatic
potentials coupling two electric dipoles . . . , an electric dipole and an electric quadrupole . . . ,
and two electric quadrupoles . . . ” (see in [159], see also in [157], p. 64). Such an approach,
which extends London’s calculations to higher multipoles as shown by Margenau, does not
rely on the quantization of the electromagnetic field.

5. Unretarded Gravitational van der Waals Forces

The classical electrostatic dipolar polarizability, α
(1)
0,E, is typically introduced by means

of a classical model in which an electron of mass me, bound to a proton by a spring of
constant K = meω2

0 , is displaced by an external electric field, E, so that the position of static
equilibrium is given by −eE = −Kr. The corresponding induced dipole moment p = er is,
therefore, p = e2/meω2

0E and the polarizability is, by definition, α
(1)
0,,E = e2/meω2

0.
Let us now develop a similar oscillator model to exhibit the static gravitational polar-

izability, α
(2)
G . It is important to notice at the onset that this calculation differs from the

electrostatic case in subtle ways that require careful consideration. For instance, as first
pointed out by Szekeres almost half-a-century ago in what was possibly the first attempt
to calculate the “gravitational dielectric constant” [160,161], and as later rediscovered by
this author in related contexts [162,163], a model of a harmonic oscillator interacting with
gravitational waves naturally leads to a Mathieu-type equation of motion. In what fol-
lows, as also done by Szekeres, we shall assume that the circumstances possibly triggering
parametric resonance are not verified.

We shall again consider an atom in which the electron is connected to the proton by
a spring aligned, for instance, along the direction pointing to another identical atom at
distance R. Again, although the electrodynamical model and this gravitational model
appear equivalent, it is not widely appreciated that the evolution of the latter in response
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to external gravitational fields depends critically on the assumed dynamics of the atoms.
For instance, the gravitational effects by a mass on “a hydrogen atom whose point proton
is immobile” [164] (“Le modèle envisagé est celui d’un atome d’hydrogène dont le proton
ponctuel est immobile à l’extérieur de la matière créant le champ” [164]) are drastically
different than those on an atom “. . . in free fall along a geodesic of the spacetime during the
time required for an atomic transition” (see in [165], see also in [166]). For the purpose of
defining the gravitational polarizability, here we shall assume that both atoms are in free
fall although it is clear that, rigorously speaking, this assumption is contradiction with the
existence of dispersion forces.

In this 1D model (see in [11], p. 100, Note 11), we shall assume the unperturbed
electron to be oscillating harmonically with amplitude equal to r1,0,0 = 3

2 a0 so that the
position time average is equal to z = r1,0,0/

√
2. The displacement from this average due to

a gravitational tidal force produced by a mass M is ∆z = meR0z0zz/K, where R0z0z are the
appropriate components of the Riemann tensor [167,168]. This yields the following induced
trace-free quadrupole moment tensor [167,168]:

Qzz =
2
3

me[(z + ∆z)2 − z2] ' 2
3

me2 z ∆z =
4
3

m2
e R0z0z

z2

K
. (24)

Therefore, the gravitational polarizability, in the static limit, can now be defined as
(Equation (11) in [131]):

α
(2)
0,G ≡

Qzz

R0z0z
=

4
3

m2
e

z2

K
=

4
3

m2
e

r2
1,0,0

2K
=

4
3

m2
e (

3
2
)2 a2

0
2K

=
3
2

m2
e a2

0
K

=
3
2

mea2
0

ω2
0

, (25)

where the units also correspond to those given therein (see comment above Equation (32)
in [131]).

For the purpose of succinctness, supported by explicit verification with Mathematica,
we shall now return to our electrostatic results to extract the expression of the gravitational
dispersion force. Obviously, as pointed out by Spruch [57,109], in this case we cannot
have a neutral atom. However, the assumption of free fall, by the Principle of Equivalence,
implies that all non-tidal gravitational interactions must not affect the dynamics of the
system (Notice that introducing a negative mass is a standard procedure employed formally
“to eliminate the mass monopole” [169] in analogy with an electric quadrupole. See also
Section 6.2). Therefore, the leading contribution left in this unretarded regime is provided
by the quadrupole–quadrupole term at Equation (18), upon carrying out Spruch’s (e2)2 →
(Gm2

e )
2 substitution, and with appropriate identification of the gravitational polarizability

given above:

VGG
22,near(R) = −

2835 a8
0 G2m4

e

4EI R10 = −315
4

EI G2(α
(2)
0,G)

2

R10 . (26)

This equation, obtained by quantizing the interacting oscillators but with classical
gravitation, is identical to that found by Ford, Hertzberg, and Karouby (see Equation (31)
in [131]) from quantum field theory provided that the two atoms are identical and with
EI = h̄ω0.

Finally, as also hinted to by Spruch, we provide new results, that is, the expressions for
the mixed quadrupole–quadrupole and dipole–quadrupole electric-gravitational potentials
in the unretarded regime. These can be obtained analogously to what done above by
carrying out only one e2 → Gm2

e substitution while leaving one e2 factor unchanged in
Equations (18) and (19), respectively:

VEG
22,near(R) = −

2835 a8
0 e2Gm2

e

2EI R10 = −
63EI Gα

(2)
0,Eα

(2)
0,G

R10 . (27)
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VEG
12,near(R) = −

135 a6
0 e2Gm2

e
EI R8 = −

45EI Gα
(1)
0,Eα

(2)
0,G

2R8 . (28)

Notice, however, that the explicit Mathematica calculation shows a factor of 2 difference
in addition to the e2 → Gm2

e substitution.

6. McLachlan’s Semiclassical Calculation of Electrodynamical Dispersion Forces

As we have mentioned above (Section 1), McLachlan developed an approach to the
calculation of dispersion forces between polarizable bodies requiring only the quantiza-
tion of the atomic degrees of freedom while leaving the interacting electromagnetic field
classical [49,170]. Within this semiclassical framework, all results from the Lifshitz theory,
including the potential of two or more molecules or that of infinite parallel dielectric sur-
faces, both in the unretarded and retarded regimes, are correctly recovered. As typical, a
method that “. . . gives the main results of Lifshitz’s treatment and does not use quantum
field theory” is justified merely as having “the advantage of using simple physical con-
cepts” [171]. In the case of this paper, however, we intend to employ this strategy to show
that a completely classical gravitational field is expected to produce dispersion forces equal
to those predicted in the low-energy limit of a hypothetical theory of quantum gravity.
Therefore, a hypothetical experimental verification of the existence of such forces would
not represent proof that the gravitational field is quantized. For the purpose of considering
such a generalization of McLachlan’s theory to the gravitational case, we first focus on the
electromagnetic case, sketching his calculation of the interatomic dipole–dipole dispersion
potential, which leads back to the expressions by London and by Casimir and Polder. We
then broaden this treatment to dipole–quadrupole and quadrupole–quadrupole electro-
dynamical dispersion forces in simplified 1D models to highlight the physical principles;
thus, reaching expressions obtained approximately four decades after Casimir and Polder
by Thirunamachandran [172] from non-relativistic QED [79], later in collaboration with
Salam, Power, and Jenkins [150,156,157,159,173].

6.1. Electric Dipole–Electric Dipole Dispersion Forces

Here, we closely follow the analyses of the relevant physical arguments in McLachlan’s
approach provided by Margenau (see in [50], especially Section 6.3), by Renne [174,175],
and by Langbein [42], adapting all notation and definitions therein to compare our results
to those above and elsewhere in the published literature, and to extend this treatment to
the case of gravitational dispersion forces.

Let us consider two coupled harmonic oscillators of displacement components uA,i
and uB,j of masses mA,B and natural frequencies ωA,B. By writing the equation of motion
of each oscillator in the absence of friction and under the action of an external force Fext =
F(ω) exp(−iωt), with i =

√
−1, the usual amplitude of the forced oscillation is found,

uA,B = χA,B(ω)Fext, where χA,B(ω) is the generalized scalar susceptibility (As discussed
below, the dimensionality of this definition differs from that at Equation (10) by [Charge]2.
For this reason, we add a factor e2 to the force equation, FBA,j = uA,ie2Tij(ω), as explicitly
done in all treatments following that by London [17] (for instance, see Equations (3.67–68)
in [11]). The definitions in McLachlan are consistent with those by Langbein (compare
Equation (5.3) in [170] with our Equation (10)). On the other hand, Margenau adopts our
definition at Equation (10) (see Ch. 2, Equation (83) in [50])):

χj(ω) =
1

mj(ω
2
j −ω2)

. (29)

In the hypothesis of linear oscillator coupling, the force FBA,j exerted by oscillator A
on B is given by the displacement uA,i as FBA,j = uA,ie2Tij(ω), where Tij(ω) will represent
the classical interaction tensor and Tij(ω) = Tji(ω) due to Newton’s third law. By writing
the equations of motion for the two oscillators and assuming solutions of the form uA,B =
uA,B(ω) exp(−iωt), with i =

√
−1, we find the standard homogeneous system of two
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equations whose determinant, set equal to zero, yields the secular equation for the normal
modes [176]:

(ω2 −ω2
A)(ω

2 −ω2
B) = e4 1

mA
Tij

1
mB

Tji . (30)

At this point, as clearly articulated by London (see in [17], § 4; see also in [22,46,47,177]),
the quantization of the oscillation modes of the harmonic oscillator, consistently with the
Uncertainty Principle, leads to a non-vanishing ground state energy, which is shifted by
the interatomic coupling according to the following expression,

∆E = 1
2 h̄(ΩA + ΩB)− 1

2 h̄(ωA + ωB) , (31)

where ΩA,B are the solutions of the secular equation. By solving Equation (30) and expand-
ing the result in the parameter Tij Tji/mAmB, we find

∆E = − e4

4
h̄

1
mA

Tij
1

mB
Tji

1
ωAωB(ωA + ωB)

. (32)

In order to verify this result, let us first discuss the structure of the dipole interaction
tensor Tij in the unretarded case. In the present system, the electrostatic potential at rB of a
dipole A located at rA is given by the elementary expression [178,179]:

Udip = −euA · ∇A

( 1
|rA − rB|

)
, (33)

so that the force acting on the elastically bound electron of dipole B is

FBA,j = −e2uA,i∇A,i∇B,j

( 1
|rA − rB|

)
(34)

and the the dipole interaction tensor can be read out as

Tij = −∇A,i∇B,j
1

|rA − rB|
. (35)

A generalization of the quantity TijTji to the full 3D case requires the explicit calcu-
lation of the quantity tr (TijTji) = 6/R6

AB, where RAB = |rA − rB|. Therefore, for ωA =
ωB = ω0 and mA = mB = me, we finally have

∆E(R) = UvdW(R) = − 3h̄e4

4m2
e ω3

0R6
AB

= − 3h̄4e4

4m2
e E2

I

1
EI R6

AB
= −

3a4
0e4

EI R6
AB

, (36)

as already found at Equation (6) and where, again, EI = h̄ω0 = e2/2a0 and a0 = h̄2/mee2.
Importantly, a different route is to express the natural frequencies at Equation (32) in

integral form by means of the identity:

1
ωAωB(ωA + ωB)

=
1
π

∫ ∞

−∞
dω

1
(ω2 + ω2

A)(ω
2 + ω2

B)
, (37)

so that, equivalently, by integrating along the imaginary frequency axis, where ωC =
ωR + iωI :

∆E = − h̄
2π

∫ ∞

0
dωI e2 χA(iωI)Tij e2 χB(iωI)Tji = −

h̄
2π

∫ ∞

0
dωI α

(1)
A,E)(iωI)Tij α

(1)
B,E)(iωI)Tji . (38)

Again, a generalization of this result to fully independent three-dimensional (3D)
oscillators leads to the well-known result by McLachlan in terms of polarizability tensors:

∆E = − h̄
2π

∫ ∞

0
dωI tr

(
α
(1)
A,E)(iωI) · Tij · α

(1)
B,E)(iωI) · Tji

)
. (39)



Symmetry 2021, 13, 40 17 of 27

In the case of isotropic molecules, the polarizability tensors again reduce to scalars
and we can write, in the unretarded case:

∆E = −3h̄
π

1
R6

ij

∫ ∞

0
dωI α

(1)
A,E)(iωI)α

(1)
B,E)(iωI) . (40)

In order to consider the retarded case, we must again compute the force on dipole B
by means of the dipole classical radiation fields. This can be done starting from the dipole
Hertz vector, Z(rA, rB, ω), given by (see in [178], Sections 14.5–7):

Z(rA, rB, ω) = pA
ei(ω/c)|rA−rB |

|rA − rB|
, (41)

The electric field is then found by means of the auxiliary vector, C = ∇× Z, as E =
∇×∇×Z. In Cartesian coordinates, this leads to the following expression for the tensor to
be multiplied by pA = euA,i in order to obtain the force on dipole B, FBA,j = uA,ie2Tij(ω),

Tij =
[
∇i∇j − δij∇2

] ei(ω/c)|rA−rB |

|rA − rB|
, (42)

where all derivatives are respect to the rA = (xA, yA, zA) coordinates. Let us now assume,
without loss of generality, dipole A to be at the origin (rA = 0) and dipole B at rB =
(r, 0, 0). Direct calculation in this geometry shows that the only non-zero components of
the interaction tensor are, after the customary rotation to the imaginary frequency axis (see
Equation (101) in [50]):

T11 =
( 2

R3

)(
1 + R

ωI
c

)
e−RωI /c (43)

T22 = T33 = −
( 1

R3

)(
1 + R

ωI
c

+ R
ω2

I
c2

)
e−RωI /c . (44)

Therefore, for isotropic atoms, the dipole polarizabilities are again scalars and the
trace at Equation (39) becomes

tr (TijTji) = e−2RωI /c
( 2ω4

I
c4R2

)(
1 +

2c
ωI R

+
5c2

ω2
I R2

+
6c3

ω3
I R3

+
3c4

ω4
I R4

)
(45)

By using this result and Equation (10) in Equation (39), we find

∆E(R) = − h̄
2π

( 2
3h̄

)2( 2
c4R2

)
∑
r,s

ωr,0 ωs,0||µ0,r||2||µ0,s||2
∫ ∞

0
dωI

ω4
I e−2RωI /c

(ω2
r,0 + ω2

I )(ω
2
s,0 + ω2

I )
×

(
1 +

2c
ωI R

+
5c2

ω2
I R2

+
6c3

ω3
I R3

+
3c4

ω4
I R4

)
. (46)

This expression for the dispersion force in terms of the dynamical polarizability as a
function of the imaginary frequency was first obtained by Casimir and Polder [24] (see also
Equation (42) in [50] and Equation (3.87) in [11,180]).

In the simplified case of two identical atoms in which only one transition is dominant
and in the unretarded limit (e−2RωI /c → 1), only the integral corresponding to the last term
∝ R−4 in Equation (45) must be considered so that we recover the well-known expression
at Equation (21):

∆E(R) = UvdW(R) = −3h̄
π

( 2
3h̄

)2( 1
R6

)
ω2

0 ||µ0,r||4,
∫ ∞

0
dωI

1
(ω2

0 + ω2
I )

2
= −

3h̄ω0(α
(1)
0,E)

2

4R6 , (47)



Symmetry 2021, 13, 40 18 of 27

where we used the expression for the static polarizability in terms of the dipole matrix ele-
ment equivalent to that given above immediately preceding Equation (20),
α
(1)
0,E = 2

3 ||µ0,r||2/h̄ω0.
The famous limit of the result at Equation (46) referred to as the Casimir–Polder poten-

tial can be obtained by realizing that, in the fully retarded regime, the static polarizability
provides the leading contribution (See footnote 14, p. 104 of the work in [11]) so that,
by using Equation (45), Equation (39) becomes

∆E(R) = UCP(R) = − h̄
2π

(α
(1)
0,E)

2
∫ ∞

0
dωI tr

(
TTTij · TTT ji

)
= − 23 h̄c

4πR7 (α
(1)
0,E)

2 . (48)

Importantly for our further generalizations, in the isotropic case, Equation (46) can be
rewritten by means of Equation (42) as [156,181]:

∆E = − h̄
2π

∫ ∞

0
α
(1)
A,E)(iωI)α

(1)
B,E)(iωI)

[(
∇i∇j − δij∇2

) e−RωI /c

R

][(
∇i∇j − δij∇2

) e−RωI /c

R

]
dωI . (49)

6.2. Application to Dispersion Forces with Electric Quadrupoles: One-Dimensional Case

As anticipated by McLachlan, the above strategy can be generalized to the case of
atoms interacting through higher order electric and magnetic multipole fields (see in [49],
Section 7 and Appendix). To the best of this author’s knowledge, however, such a semi-
classical program has never been appeared in the published literature. In what follows,
in support of our analysis of the gravitational case, we consider electric dipole–electric
quadrupole and electric quadrupole–electric quadrupole interactions. In order to expose
the physical processes involved behind this approach while avoiding lengthy calculations,
we shall not analyze the full 3D geometry but, as often done in survey presentations about
the unretarded and retarded regimes [46,47,177], we shall restrict ourselves to the 1D
case. Extension to the full 3D case is promptly achieved through straightforward, though
technically more intricate, calculations as just demonstrated in the previous section.

In analogy with the process leading to Equation (36), let us now consider one simple
1D classical quadrupole, A, represented by two pairs of identical, opposing, elastically
bound point dipoles, pA/δ at a mutual vector distance δuA, where δ is a limit parameter
(Section 4.4 in [182]) (Another useful simple quadrupole model is given by three charges
(+q, −2q, +q) arranged along a straight line at charge-to-charge distances equal to d [169]).
Let us first assume the two opposing dipoles to be aligned along the x-axis and interacting
with another single dipole, pB, like those used in the previous section, also parallel to the
the x-axis.

The only non-vanishing component of the point quadrupole tensor, in the limit δ→ 0,
is Qxx = uA pA and the traceless quadrupole tensor becomes Qxx = 3Qxx −Qxx = 2Qxx =
2uA pA. The quadrupole potential can then be written as [183]:

Uquad =
1
6

Qxx
∂2

∂x2

( 1
|rA − rB|

)
, (50)

and, analogously to Equation (34), the force on the oscillating charge of dipole pB is:

FBA,x =
1
3

euA pA
∂3

∂x3

( 1
|rA − rB|

)
. (51)

Finally, since the 1D ‘trace’ TijTji = (∂3/∂x3
A)(1/|xA − xB|) = 36/x8, we obtain,

indicating r = |xA − xB| and by identifying p2
A = 1

3 ||µ1,0,0||2 = a2
0e2:

∆E1D
12 = − e4

4
h̄

1
9

e2||pA||2
1

2ω3
0

1
m2

e

36
x8 = −6

a6
0e4

EI

1
r8 , (52)
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to be compared to Equation (14). By again exploiting the identity at Equation (37) and by
comparing the middle term of the above equation to that at Equation (36), it can be recog-
nized that ||µ1,0,0||2 χA(iωI)Tij = α

(2)
B,E) and e2 χB(iωI)Tji = α

(1)
B,E) (see Equations (1.7)–(1.8)

in [150]), so that this result can be put into the important integral form analogous to that as
at Equation (38)

∆E12 = V12(r) = −
h̄

2π

∫ ∞

0
dωI α

(1)
A,E)(iωI)Tij α

(2)
B,E)(iωI)Tji = −

18h̄
π

1
r8

∫ ∞

0
dωI α

(1)
A,E)(iωI) α

(2)
B,E)(iωI) . (53)

As mentioned above (Section 4.2), this result was previously obtained by a full QED
approach by Jenkins (Equation (6.7), Ref. [159]), and then re-derived by appropriate gen-
eralizations by Salam (Equation (3.5) in [156]) and by Power (Equation (1.5) in [150]) all
working with Thirunamachandran (Notice that units employed in these works differ from
one another. Power and Thirunamachandran showed that the correct numerical factor in
the full 3D case is 90. Also, the speed of light c factors in Equations (1.4)–(1.6) in [150],
which refer to the unretarded limit, are erroneous).

In the case of electric unretarded electric quadrupole–quadrupole forces, the system
is represented by two quadrupoles as A above, that is, a total of four dipoles elastically
bound in opposing pairs and, in the 1D case, all parallel to the x-axis. The force due to the
electric field produced by quadrupole A acting on the oscillating dipole of atom B is given
by the well-known equation F = (p · ∇)E [179,182] so that the force becomes

FBA,x = −1
3

euA pA pB
∂4

∂x4

( 1
|rA − rB|

)
. (54)

Therefore, TijTji = (∂4/∂x4
A)(1/|xA− xB|) = 576/x10, leading to the unretarded potential

∆E1D
22 = −32

a8
0e4

EI

1
r10 , (55)

again to be compared to Equation (14). The integral form immediately descends from this
formulation as

∆E22 = V22,near(r) = −
288h̄

π

1
r10

∫ ∞

0
dωI α

(2)
A,E)(iωI) α

(2)
B,E)(iωI) , (56)

again in agreement, to within the constant numerical factor, with results previously
found [150,156,159]. Importantly, a comparison of the quantity TijTji at Equation (35) and in
the cases above shows that the required order of the derivative of the potential 1/|rA − rB|
increases by one unit for each integer order of the multipoles considered. This observation
is reflected in the generalization of the results above to all multipole orders, including
possibly anisotropic polarizabilities. For instance, to treat the general case of any inter-
atomic distance, the factors [(∇i∇j − δij∇2)(e−RωI /c/R)] at Equation (49) must likewise
be modified into [(∇i∇j − δij∇2)∇k(e−RωI /c/R)] and [(∇i∇j − δij∇2)∇k∇l(e−RωI /c/R)]
in the two systems analyzed, respectively, and “tumbling averages” must be taken over all
orientations in the case of isotropic atoms (see Equation (2.9) in [156]).

To briefly illustrate the important fully retarded regime, let us consider the interactions
∆E1D

12 (Equation (52) and ∆E1D
22 (Equation (55) by starting from the quadrupole field Hertz

vector j-component (see in [178], Section 14-8), as done above at Equation (41):

Zquad,j =
ω

2c
ei(ω/c)|rA−rB |

|rA − rB|2
xiQij . (57)

By proceeding again as above to calculate the electric field as E = ∇×∇× Zquad,
analogously to Equation (45), by forming the trace of the interaction tensor in this 1D
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model, isolating the static polarizabilities α
(1)
0,E) and α

(2)
0,E), and by calculating an integral

analogous to that at Equation (48), we find, for the dipole–quadrupole energy,

∆E12 = V12,far(r) = −C12
h̄c

πr9 α
(1)
0,E) α

(2)
0,E) (58)

where C is a numerical constant. A similar procedure for the quadrupole–quadrupole
interaction, seeking the quantity (p · ∇)E, leads to:

∆E22 = V22,far(r) = −C22
h̄c

πr11 α
(2)
0,E) α

(2)
0,E) . (59)

These results are in full agreement, to within the constants C12 and C22, with those by
Power and Thirumanamachandran (Equations (4.13)–(4.14) in [150]). Furthermore, the cor-
responding expressions in terms of integrals over the proper multipole polarizabilities
as functions of the complex frequency, generalizing Equation (49), are promptly written
and lead to the same expressions provided by Salam and collaborators (a full review is
provided in [157] and references therein).

6.3. Application of McLachlan’s Approach to Gravitational Dispersion Forces

The semiclassical computation of gravitational dispersion forces is a straightforward
extension of the process just described. As we have already commented (Sections 5 and 6.2),
strong analogies exist between the calculations with multipoles in the electrodynamic and
in the gravitational case [169]. The calculation of the multipole fields in Cartesian coordi-
nates in both electromagnetism and gravitation is mathematically relatively burdensome,
as shown even in the much simplified 1D case, and it benefits from the computer algebra
approach applied extensively in this paper. However, the physical principle of McLachlan’s
approach as applied to gravitation within the context of general relativity is quite clear. In
analogy to electrodynamics, atoms interact through possibly retarded gravitational fields
due to the oscillating sources and dispersion forces appear as the atomic energy levels
are quantized, that is, one again envisions two systems of elastically bound dipole pairs
aligned to the x-axis in near-free fall (considering accelerations due to dispersion forces as
much smaller than that due to the monopoles). As shown in Section 5 in our simplified
1D model, the force acting on each oscillator is given by the appropriate Riemann tensor
component, which can be obtained from the classical field metric solution given in general,
for instance, by Ford et al. (Equations (4)–(9) in [131]) or, for a simplified model, by Price et
al. (Equations (24)–(26) in [169]). Importantly, in the gravitational case, the Riemann tensor,
and thus the interaction tensor, are determined through second derivatives with respect
to spacetime coordinates of the metric tensor solution (Equations (7.27)–(7.29) in [184]),
which does not directly determine the force. As in the electrodynamical case, this compu-
tation reproduces our results for the unretarded dispersion force in Section 5 and Ford’s
results in all distance regimes, to within numerical constants reflecting our dimensional
simplification.

7. Experimental Detection of Gravitational Dispersion Forces

There is no doubt that identifying any effects of gravitation on dispersion forces
is one of the most extreme contemporary experimental challenges. Generally speaking,
these include not only the gravitational dispersion forces discussed in this paper but
also the effects of time-independent spacetime curvature on electrodynamical dispersion
forces, which can be viewed as a manifestation of the inertial equivalent of the Casimir
potential energy [88,185]. Although these two avenues for gravitation to affect theoretical
predictions are sometimes, puzzlingly, conflated [186], they are connected to drastically
different phenomena. Whereas treatments of the latter hinge on relatively well-understood,
uncontroversial concepts and measurements are deemed within reach [187–189], the former,
which we briefly consider herein, depend on novel, exotic physical mechanisms.
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As mentioned above (Section 3), the possibility to detect a macroscopic gravitational
Casimir force has been recently brought to the fore [129] by the proposal that superconduc-
tors could be caused to act as nearly-ideal gravitational wave reflectors through a so-called
“Heisenberg–Coulomb effect” [125]. This is a remarkably bold statement considering that
even neutron stars are predicted to reflect gravitational waves with an index of reflection
of only 4–25% [190]. The idea that superconductors might appreciably reflect and refract
gravitational waves, thus enabling table-top gravitational wave optics [122,124], has been
proposed by several authors [191] but it remains experimentally unverified. As already
clarified by this author, in the theory of the Heisenberg–Coulomb effect, all radiation fields
are treated classically [125] and the gravitational Casimir effect, even if detected, would
not represent proof of the quantization of the gravitational field as extensively discussed in
this paper [60]. Furthermore, initial predictions of the gravitational Casimir force as being
even larger than its QED counterpart by almost one order of magnitude were shown to
be due to a computational error [130]. Finally, recent measurements of the Casimir force
between superconductors [186], although criticized [192], were reported to rule out the
predicted gravitational Casimir effect in superconductors.

As regards systems in which detection of a gravitational Casimir–Polder effect might
be feasible, Ford and collaborators [131] speculatively suggest “microscopic clumps built
out of heavy sterile neutrinos” as possible, but as yet unconfirmed, interacting dark matter
systems. An additional suggestion has been made by the present author to study Efimov
states in dark matter once and if its components are definitely identified [193].

A more optimistic consideration is that identifying experimentally accessible phenom-
ena that involve mixed potentials would represent an immense step towards fulfilling a
detection goal since such quantities are larger by approximately 43 orders of magnitude
(∼e2/Gm2

e ) than those due purely to gravitational fluctuations. This exploration is only
now starting with indications, for instance, that low energy scattering experiments with
neutrons in ground-based laboratories may prove useful [194].

As we have argued throughout this paper, any determination of the existence of
gravitational dispersion forces will probably not represent conclusive proof of the quantum
nature of the gravitational field. However, this makes the prospect of such an experiment
in no way less exciting. What shall we find? Surprising scenarios are indeed possible,
especially in the even more challenging retarded regime in which the existence of a minimal
length may introduce modifications in the expressions found herein. Any theoretical
estimates might be modified if fundamental assumptions are found to be inaccurate,
for instance, because of a significant stochastic gravitational wave background [60] or the
existence of Planck scale granularity [194]. Regardless of whether gravitational dispersion
force behavior departs from or conforms to theoretical predictions, we shall enter a new
era in our understanding of crucial parameters that characterize the structure of spacetime
as well as the universe on astrophysical and cosmological scales.

8. Discussion and Conclusions

In closing, it is appropriate to discuss the connection between the main thesis of this
paper and two apparently widely separate issues. Philosophically speaking, the history of
forces between the basic constituents of matter is far older than that of the last few decades.
In fact, interactions between “atoms” were deemed indispensable to the apparatus of philo-
sophical atomism introduced by Leucippus and Democritus of Abdera. As this author has
previously discussed [195], the existence of dispersion forces, whether within a quantum or
a semiclassical description, ties the logical self-consistency of atomistic philosophy to the
question of the nature of the vacuum. The challenge, as identified by Post, appears to be
“. . . the difficulty of reconciling a world of interacting parts with atomism, which ideally re-
quires independence for its atoms” [196]. As we have seen, physics, even at a semiclassical
level, explains the existence of dispersion forces by introducing the concept of zero-point
field, thus making a statement about another difficulty “. . . traditionally associated with
atomism, . . . the problem of the void”. J. A. Wheeler stated: “No point is more central than
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this, that empty space is not empty. . . ” [167] and adopting his “foam-like structure” [197]
must necessarily introduce new interactions among the basic constituents of matter. Atom-
ism, identified by some with determinism [198], functions if we accept stochasticity or
uncertainty so as to introduce needed forces between polarizable particles. Therefore,
the subject of gravitational dispersion forces, by introducing uncertainty in spacetime, adds
one further layer of complexity to these reflections, as will be discussed elsewhere.

Technologically speaking, it would be natural to doubt that such fantastically small in-
teractions as gravitational dispersion forces might lead to novel applications. Although we
shall not even attempt to speculate about possible future developments here, we shall recall
that, when Jordan Maclay and his collaborators suggested in 1995 that electrodynamical
Casimir forces may have some important applications in microelectromechanical system
(MEMS) engineering [70], it was certainly less than obvious that such apparently exotic
interactions would, two decades later, enable a human to climb vertically on glass [199].
Such has been, however, the history of dispersion force research technology transfer [3].
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