# S-Matrix and Anomaly of de Sitter

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Double-Scaling Limit

## 3. De Sitter as Saturated Coherent State

- (1)
- A collective recoil. During this process, the recoil momentum is delivered to the entire coherent state, without exciting its individual graviton constituents. This phenomenon can be viewed as something similar to a gravitational Mössbauer effect.
- (2)
- A corpuscular recoil. During this process, the recoil excites some individual quanta of the coherent state. This impact is suppressed by the gravitational coupling (13), and therefore amounts to $1/N$ effect.

## 4. $\mathbf{1}/\mathit{N}$ Effects

## 5. Quantum Break-Time

## 6. $\mathit{S}$-Matrix and Quantum Breaking

## 7. ${\mathit{t}}_{\mathit{Q}}$ in String Theory

## 8. Connection to Witten–Veneziano

## 9. Some Comparisons

## 10. Observational Signatures and Power of Species

## 11. Outlook

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Dvali, G.; Gomez, C. Quantum Compositeness of Gravity: Black Holes, AdS and Inflation. J. Cosmol. Astropart. Phys.
**2014**, 1, 023. [Google Scholar] [CrossRef] [Green Version] - Dvali, G.; Gomez, C. Quantum Exclusion of Positive Cosmological Constant? Annalen Phys.
**2016**, 528, 68–73. [Google Scholar] [CrossRef] [Green Version] - Dvali, G.; Gomez, C.; Zell, S. Quantum Break-Time of de Sitter. J. Cosmol. Astropart. Phys.
**2017**, 06, 028. [Google Scholar] [CrossRef] [Green Version] - Witten, E. Quantum gravity in de Sitter space. arXiv
**2001**, arXiv:hep-th/0106109. [Google Scholar] - Dvali, G.; Gomez, C. Black Hole’s Quantum N-Portrait. Fortsch. Phys.
**2013**, 61, 742–767. [Google Scholar] [CrossRef] [Green Version] - Hooft, G. A Planar Diagram Theory for Strong Interactions. Nucl. Phys. B
**1974**, 72, 461. [Google Scholar] [CrossRef] [Green Version] - Witten, E. Current Algebra Theorems for the U(1) Goldstone Boson. Nucl. Phys. B
**1979**, 156, 269–283. [Google Scholar] [CrossRef] - Veneziano, G. U(1) Without Instantons. Nucl. Phys. B
**1979**, 159, 213–224. [Google Scholar] [CrossRef] [Green Version] - Gibbons, G.W.; Hawking, S.W. Cosmological Event Horizons, Thermodynamics, and Particle Creation. Phys. Rev. D
**1977**, 15, 2738–2751. [Google Scholar] [CrossRef] [Green Version] - Hagedorn, R. Statistical thermodynamics of strong interactions at high-energies. Nuovo Cim. Suppl.
**1965**, 3, 147–186. [Google Scholar] - Bowick, M.J. Finite temperature strings. arXiv
**1992**, arXiv:hep-th/9210016. [Google Scholar] - Dvali, G.R.; Tye, S.H.H. Brane inflation. Phys. Lett. B
**1999**, 450, 72–82. [Google Scholar] [CrossRef] [Green Version] - Dvali, G.R. Infrared hierarchy, thermal brane inflation and superstrings as superheavy dark matter. Phys. Lett. B
**1999**, 459, 489–496. [Google Scholar] [CrossRef] [Green Version] - Dvali, G.R.; Shafi, Q.; Solganik, S. D-brane inflation. arXiv
**2001**, arXiv:hep-th/0105203. [Google Scholar] [CrossRef] [Green Version] - Burgess, C.P.; Majumdar, M.; Nolte, D.; Quevedo, F.; Rajesh, G.; Zhang, R.J. The Inflationary brane anti-brane universe. J. High Energy Phys.
**2001**, 07, 047. [Google Scholar] [CrossRef] [Green Version] - Kachru, S.; Kallosh, R.; Linde, A.D.; Trivedi, S.P. De Sitter vacua in string theory. Phys. Rev. D
**2003**, 68, 046005. [Google Scholar] [CrossRef] [Green Version] - Kachru, S.; Kallosh, R.; Linde, A.D.; Maldacena, J.M.; McAllister, L.P.; Trivedi, S.P. Towards inflation in string theory. J. Cosmol. Astropart. Phys.
**2003**, 10, 013. [Google Scholar] [CrossRef] - Dvali, G.; Gomez, C. Species and Strings. arXiv
**2010**, arXiv:1004.3744. [Google Scholar] - Dvali, G. Black Holes and Large N Species Solution to the Hierarchy Problem. Fortsch. Phys.
**2010**, 58, 528–536. [Google Scholar] [CrossRef] [Green Version] - Dvali, G.; Redi, M. Black Hole Bound on the Number of Species and Quantum Gravity at LHC. Phys. Rev. D
**2008**, 77, 045027. [Google Scholar] [CrossRef] [Green Version] - Srednicki, M. IIB or not IIB. J. High Energy Phys.
**1998**, 8, 5. [Google Scholar] [CrossRef] [Green Version] - Sen, A. NonBPS states and Branes in string theory. arXiv
**1999**, arXiv:hep-th/9904207. [Google Scholar] - Kühnel, F. Thoughts on the Vacuum Energy in the Quantum N-Portrait. Mod. Phys. Lett. A
**2015**, 30, 1550197. [Google Scholar] [CrossRef] [Green Version] - Kuhnel, F.; Sandstad, M. Corpuscular Consideration of Eternal Inflation. Eur. Phys. J. C
**2015**, 75, 505. [Google Scholar] [CrossRef] [Green Version] - Casadio, R.; Kuhnel, F.; Orlandi, A. Consistent Cosmic Microwave Background Spectra from Quantum Depletion. J. Cosmol. Astropart. Phys.
**2015**, 9, 2. [Google Scholar] [CrossRef] [Green Version] - Berezhiani, L. On Corpuscular Theory of Inflation. Eur. Phys. J. C
**2017**, 77, 106. [Google Scholar] [CrossRef] [Green Version] - Brahma, S.; Dasgupta, K.; Tatar, R. Four-dimensional de Sitter space is a Glauber-Sudarshan state in string theory. arXiv
**2020**, arXiv:2007.00786. [Google Scholar] - Dvali, G.; Flassig, D.; Gomez, C.; Pritzel, A.; Wintergerst, N. Scrambling in the Black Hole Portrait. Phys. Rev. D
**2013**, 88, 124041. [Google Scholar] [CrossRef] [Green Version] - Dvali, G.; Gomez, C.; Lüst, D. Classical Limit of Black Hole Quantum N-Portrait and BMS Symmetry. Phys. Lett. B
**2016**, 753, 173–177. [Google Scholar] [CrossRef] [Green Version] - Dvali, G. Entropy Bound and Unitarity of Scattering Amplitudes. arXiv
**2020**, arXiv:2003.05546. [Google Scholar] - Dvali, G.; Zell, S. Classicality and Quantum Break-Time for Cosmic Axions. J. Cosmol. Astropart. Phys.
**2018**, 07, 064. [Google Scholar] [CrossRef] [Green Version] - Kovtun, A.; Zantedeschi, M. Breaking BEC. J. High Energy Phys.
**2020**, 07, 212. [Google Scholar] [CrossRef] - Kovtun, A.; Zantedeschi, M. Breaking BEC: The fast and the quantum. arXiv
**2020**, arXiv:2008.02187. [Google Scholar] - Berezhiani, L.; Zantedeschi, M. On Evolution of Coherent States as Quantum Counterpart of Classical Dynamics. arXiv
**2020**, arXiv:2011.11229. [Google Scholar] - Banks, T. Cosmological breaking of supersymmetry? Int. J. Mod. Phys. A
**2001**, 16, 910–921. [Google Scholar] [CrossRef] - Tsamis, N.C.; Woodard, R.P. Quantum gravity slows inflation. Nucl. Phys. B
**1996**, 474, 235–248. [Google Scholar] [CrossRef] [Green Version] - Polyakov, A.M. Infrared instability of the de Sitter space. arXiv
**2012**, arXiv:1209.4135. [Google Scholar] - Anderson, P.R.; Mottola, E.; Sanders, D.H. Decay of the de Sitter Vacuum. Phys. Rev. D
**2018**, 97, 065016. [Google Scholar] [CrossRef] [Green Version] - Obied, G.; Ooguri, H.; Spodyneiko, L.; Vafa, C. De Sitter Space and the Swampland. arXiv
**2018**, arXiv:1806.08362. [Google Scholar] - Ooguri, H.; Palti, E.; Shiu, G.; Vafa, C. Distance and de Sitter Conjectures on the Swampland. Phys. Lett. B
**2019**, 788, 180–184. [Google Scholar] [CrossRef] - Dvali, G.; Gomez, C. On Exclusion of Positive Cosmological Constant. Fortsch. Phys.
**2019**, 67, 1800092. [Google Scholar] [CrossRef] - Dvali, G.; Gomez, C.; Zell, S. Quantum Breaking Bound on de Sitter and Swampland. Fortsch. Phys.
**2019**, 67, 1800094. [Google Scholar] [CrossRef] [Green Version] - Secrest, N.J.; von Hausegger, S.; Rameez, M.; Mohayaee, R.; Sarkar, S.; Colin, J. A Test of the Cosmological Principle with Quasars. 4 citations counted in INSPIRE as of 25 Nov 2020. arXiv
**2020**, arXiv:2009.14826. [Google Scholar] - Dvali, G.; Eisemann, L.; Michel, M.; Zell, S. Universe’s Primordial Quantum Memories. J. Cosmol. Astropart. Phys.
**2019**, 03, 010. [Google Scholar] [CrossRef] [Green Version] - Dvali, G.; Gomez, C. Self-Completeness of Einstein Gravity. arXiv
**2010**, arXiv:1005.3497. [Google Scholar] - Dvali, G.; Giudice, G.F.; Gomez, C.; Kehagias, A. UV-Completion by Classicalization. J. High Energy Phys.
**2011**, 8, 108. [Google Scholar] [CrossRef] [Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dvali, G.
*S*-Matrix and Anomaly of de Sitter. *Symmetry* **2021**, *13*, 3.
https://doi.org/10.3390/sym13010003

**AMA Style**

Dvali G.
*S*-Matrix and Anomaly of de Sitter. *Symmetry*. 2021; 13(1):3.
https://doi.org/10.3390/sym13010003

**Chicago/Turabian Style**

Dvali, Gia.
2021. "*S*-Matrix and Anomaly of de Sitter" *Symmetry* 13, no. 1: 3.
https://doi.org/10.3390/sym13010003