# LISA Sensitivity to Gravitational Waves from Sound Waves

## Abstract

**:**

## 1. Introduction

## 2. Signal

## 3. Noise

## 4. Sensitivity

- Dark-sector model featuring a spontaneously broken $U\left(1\right)$ gauge symmetry [60].
- Dark-sector model featuring two gauge-singlet scalars [60].
- ${\left|H\right|}^{6}$ and ${\left|H\right|}^{8}$ operators in the standard model effective field theory (SMEFT) [61].
- Dark-matter model based on gauged and spontaneously broken lepton number [62].
- Holographic phase transitions in extra-dimensional Randall–Sundrum models [70].
- Composite-Higgs models featuring different pseudo-Nambu–Goldstone bosons [75].

## 5. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al. Laser Interferometer Space Antenna. arXiv
**2017**, arXiv:1702.00786. [Google Scholar] - Baker, J.; Bellovary, J.; Bender, P.L.; Berti, E.; Caldwell, R.; Camp, J.; Conklin, J.W.; Cornish, N.; Cutler, C.; DeRosa, R.; et al. The Laser Interferometer Space Antenna: Unveiling the Millihertz Gravitational Wave Sky. arXiv
**2019**, arXiv:1907.06482. [Google Scholar] - Maggiore, M. Gravitational wave experiments and early universe cosmology. Phys. Rept.
**2000**, 331, 283. [Google Scholar] [CrossRef] [Green Version] - Romano, J.D.; Cornish, N.J. Detection methods for stochastic gravitational-wave backgrounds: A unified treatment. Living Rev. Rel.
**2017**, 20, 2. [Google Scholar] [CrossRef] [PubMed] - Caprini, C.; Figueroa, D.G. Cosmological Backgrounds of Gravitational Waves. Class. Quant. Grav.
**2018**, 35, 163001. [Google Scholar] [CrossRef] [Green Version] - Christensen, N. Stochastic Gravitational Wave Backgrounds. Rept. Prog. Phys.
**2019**, 82, 016903. [Google Scholar] [CrossRef] [Green Version] - Weir, D.J. Gravitational waves from a first order electroweak phase transition: A brief review. Philos. Trans. R. Soc. Lond. A
**2018**, 376, 20170126. [Google Scholar] [CrossRef] [Green Version] - Mazumdar, A.; White, G. Review of cosmic phase transitions: Their significance and experimental signatures. Rept. Prog. Phys.
**2019**, 82, 076901. [Google Scholar] [CrossRef] [Green Version] - Caprini, C.; Hindmarsh, M.; Huber, S.; Konst, T.; Kozaczuk, J.; Nardini, G.; No, J.M.; Petiteau, A.; Schwaller, P.; Servant, G.; et al. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions. J. Cosmol. Astropart. Phys.
**2016**, 4, 1. [Google Scholar] [CrossRef] - Caprini, C.; Chala, M.; Dorsch, G.C.; Hindmarsh, M.; Huber, S.J.; Konst, T.; Kozaczuk, J.; Nardini, G.; No, J.M.; Rummukainen, K.; et al. Detecting gravitational waves from cosmological phase transitions with LISA: An update. J. Cosmol. Astropart. Phys.
**2020**, 2003, 24. [Google Scholar] [CrossRef] [Green Version] - Hindmarsh, M.; Huber, S.J.; Rummukainen, K.; Weir, D.J. Gravitational waves from the sound of a first order phase transition. Phys. Rev. Lett.
**2014**, 112, 041301. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Giblin, J.T.; Mertens, J.B. Vacuum Bubbles in the Presence of a Relativistic Fluid. J. High Energy Phys.
**2013**, 12, 42. [Google Scholar] [CrossRef] - Giblin, J.T.; Mertens, J.B. Gravitional radiation from first-order phase transitions in the presence of a fluid. Phys. Rev. D
**2014**, 90, 023532. [Google Scholar] [CrossRef] [Green Version] - Hindmarsh, M.; Huber, S.J.; Rummukainen, K.; Weir, D.J. Numerical simulations of acoustically generated gravitational waves at a first order phase transition. Phys. Rev. D
**2015**, 92, 123009. [Google Scholar] [CrossRef] [Green Version] - Hindmarsh, M. Sound shell model for acoustic gravitational wave production at a first-order phase transition in the early Universe. Phys. Rev. Lett.
**2018**, 120, 071301. [Google Scholar] [CrossRef] [Green Version] - Hindmarsh, M.; Huber, S.J.; Rummukainen, K.; Weir, D.J. Shape of the acoustic gravitational wave power spectrum from a first order phase transition. Phys. Rev.
**2017**, D96, 103520. [Google Scholar] [CrossRef] [Green Version] - Hindmarsh, M.; Hijazi, M. Gravitational waves from first order cosmological phase transitions in the Sound Shell Model. J. Cosmol. Astropart. Phys.
**2019**, 1912, 62. [Google Scholar] [CrossRef] [Green Version] - Kosowsky, A.; Turner, M.S.; Watkins, R. Gravitational radiation from colliding vacuum bubbles. Phys. Rev. D
**1992**, 45, 4514. [Google Scholar] [CrossRef] - Kosowsky, A.; Turner, M.S.; Watkins, R. Gravitational waves from first order cosmological phase transitions. Phys. Rev. Lett.
**1992**, 69, 2026. [Google Scholar] [CrossRef] - Kosowsky, A.; Turner, M.S. Gravitational radiation from colliding vacuum bubbles: Envelope approximation to many bubble collisions. Phys. Rev. D
**1993**, 47, 4372. [Google Scholar] [CrossRef] [Green Version] - Kamionkowski, M.; Kosowsky, A.; Turner, M.S. Gravitational radiation from first order phase transitions. Phys. Rev. D
**1994**, 49, 2837. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Caprini, C.; Durrer, R.; Servant, G. Gravitational wave generation from bubble collisions in first-order phase transitions: An analytic approach. Phys. Rev. D
**2008**, 77, 124015. [Google Scholar] [CrossRef] [Green Version] - Huber, S.J.; Konstandin, T. Gravitational Wave Production by Collisions: More Bubbles. J. Cosmol. Astropart. Phys.
**2008**, 9, 22. [Google Scholar] [CrossRef] [Green Version] - Caprini, C.; Durrer, R. Gravitational waves from stochastic relativistic sources: Primordial turbulence and magnetic fields. Phys. Rev. D
**2006**, 74, 063521. [Google Scholar] [CrossRef] [Green Version] - Kahniashvili, T.; Kosowsky, A.; Gogoberidze, G.; Maravin, Y. Detectability of Gravitational Waves from Phase Transitions. Phys. Rev. D
**2008**, 78, 043003. [Google Scholar] [CrossRef] [Green Version] - Kahniashvili, T.; Campanelli, L.; Gogoberidze, G.; Maravin, Y.; Ratra, B. Gravitational Radiation from Primordial Helical Inverse Cascade MHD Turbulence. Phys. Rev. D
**2008**, 78, 123006. [Google Scholar] [CrossRef] - Kahniashvili, T.; Kisslinger, L.; Stevens, T. Gravitational Radiation Generated by Magnetic Fields in Cosmological Phase Transitions. Phys. Rev. D
**2010**, 81, 023004. [Google Scholar] [CrossRef] [Green Version] - Caprini, C.; Durrer, R.; Servant, G. The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition. J. Cosmol. Astropart. Phys.
**2009**, 12, 24. [Google Scholar] [CrossRef] - Kisslinger, L.; Kahniashvili, T. Polarized Gravitational Waves from Cosmological Phase Transitions. Phys. Rev. D
**2015**, 92, 043006. [Google Scholar] [CrossRef] [Green Version] - Thrane, E.; Romano, J.D. Sensitivity curves for searches for gravitational-wave backgrounds. Phys. Rev.
**2013**, D88, 124032. [Google Scholar] [CrossRef] [Green Version] - Alanne, T.; Hugle, T.; Platscher, M.; Schmitz, K. A fresh look at the gravitational-wave signal from cosmological phase transitions. J. High Energy Phys.
**2020**, 3, 1–27. [Google Scholar] [CrossRef] [Green Version] - Schmitz, K. New Sensitivity Curves for Gravitational-Wave Experiments. arXiv
**2020**, arXiv:2002.04615. [Google Scholar] - Nelemans, G.; Tout, C. Reconstructing the evolution of white dwarf binaries: Further evidence for an alternative algorithm for the outcome of the common-envelope phase in close binaries. Mon. Not. Roy. Astron. Soc.
**2005**, 356, 753. [Google Scholar] [CrossRef] [Green Version] - Toonen, S.; Nelemans, G.; Zwart, S.P. Supernova Type Ia progenitors from merging double white dwarfs: Using a new population synthesis model. Astron. Astrophys.
**2012**, 546, A70. [Google Scholar] [CrossRef] - Korol, V.; Rossi, E.M.; Groot, P.J.; Nelemans, G.; Toonen, S.; Brown, A.G. Prospects for detection of detached double white dwarf binaries with Gaia, LSST and LISA. Mon. Not. R. Astron. Soc.
**2017**, 470, 1894. [Google Scholar] [CrossRef] [Green Version] - Cornish, N.; Robson, T. Galactic binary science with the new LISA design. J. Phys. Conf. Ser.
**2017**, 840, 012024. [Google Scholar] [CrossRef] [Green Version] - Littenberg, T.; Cornish, N.; Lackeos, K.; Robson, T. Global Analysis of the Gravitational Wave Signal from Galactic Binaries. arXiv
**2020**, arXiv:2004.08464. [Google Scholar] [CrossRef] - Espinosa, J.R.; Konstandin, T.; No, J.M.; Servant, G. Energy Budget of Cosmological First-order Phase Transitions. J. Cosmol. Astropart. Phys.
**2010**, 1006, 028. [Google Scholar] [CrossRef] - Giese, F.; Konstandin, T.; van de Vis, J. Model-independent energy budget of cosmological first-order phase transitions. arXiv
**2020**, arXiv:2004.06995. [Google Scholar] - Ellis, J.; Lewicki, M.; No, J.M. On the Maximal Strength of a First-Order Electroweak Phase Transition and its Gravitational Wave Signal. J. Cosmol. Astropart. Phys.
**2019**, 1904, 3. [Google Scholar] [CrossRef] [Green Version] - Ellis, J.; Lewicki, M.; No, J.M.; Vaskonen, V. Gravitational wave energy budget in strongly supercooled phase transitions. J. Cosmol. Astropart. Phys.
**2019**, 1906, 24. [Google Scholar] [CrossRef] [Green Version] - Ellis, J.; Lewicki, M.; No, J.M. Gravitational waves from first-order cosmological phase transitions: Lifetime of the sound wave source. arXiv
**2020**, arXiv:2003.07360. [Google Scholar] [CrossRef] - Robson, T.; Cornish, N.J.; Liu, C. The construction and use of LISA sensitivity curves. Class. Quant. Grav.
**2019**, 36, 105011. [Google Scholar] [CrossRef] [Green Version] - Edwards, M.C.; Maturana-Russel, P.; Meyer, R.; Gair, J.; Korsakova, N.; Christensen, N. Identifying and Addressing Nonstationary LISA Noise. arXiv
**2020**, arXiv:2004.07515. [Google Scholar] - Larson, S.L.; Hiscock, W.A.; Hellings, R.W. Sensitivity curves for spaceborne gravitational wave interferometers. Phys. Rev.
**2000**, D62, 062001. [Google Scholar] [CrossRef] [Green Version] - Larson, S.L.; Hellings, R.W.; Hiscock, W.A. Unequal arm space borne gravitational wave detectors. Phys. Rev.
**2002**, D66, 062001. [Google Scholar] [CrossRef] [Green Version] - Tinto, M.; Alves, M.E.D. LISA Sensitivities to Gravitational Waves from Relativistic Metric Theories of Gravity. Phys. Rev.
**2010**, D82, 122003. [Google Scholar] [CrossRef] [Green Version] - Blaut, A. Angular and frequency response of the gravitational wave interferometers in the metric theories of gravity. Phys. Rev.
**2012**, D85, 043005. [Google Scholar] - Liang, D.; Gong, Y.; Weinstein, A.J.; Zhang, C.; Zhan, C.G. Frequency response of space-based interferometric gravitational-wave detectors. Phys. Rev.
**2019**, D99, 104027. [Google Scholar] [CrossRef] [Green Version] - Zhang, C.; Gao, Q.; Gong, Y.; Liang, D.; Weinstein, A.J.; Zhang, C. Frequency response of time-delay interferometry for space-based gravitational wave antenna. Phys. Rev.
**2019**, D100, 064033. [Google Scholar] [CrossRef] [Green Version] - Lu, X.-Y.; Tan, Y.-J.; Shao, C.-G. Sensitivity functions for space-borne gravitational wave detectors. Phys. Rev.
**2019**, D100, 044042. [Google Scholar] [CrossRef] - Zhang, C.; Gao, Q.; Gong, Y.; Wang, B.; Weinstein, A.J.; Zhang, C. Full analytical formulas for frequency response of space-based gravitational wave detectors. arXiv
**2020**, arXiv:2003.01441. [Google Scholar] [CrossRef] - Wang, G.; Ni, W.-T.; Han, W.-B. Sensitivity investigation for unequal-arm LISA and TAIJI: The first-generation time-delay interferometry optimal channels. arXiv
**2020**, arXiv:2008.05812. [Google Scholar] - Vallisneri, M.; Bayle, J.-B.; Babak, S.; Petiteau, A. TDI-infinity: Time-delay interferometry without delays. arXiv
**2020**, arXiv:2008.12343. [Google Scholar] - Littenberg, T.B.; Cornish, N.J. Bayesian inference for spectral estimation of gravitational wave detector noise. Phys. Rev. D
**2015**, 91, 084034. [Google Scholar] [CrossRef] [Green Version] - Allen, B. The Stochastic gravity wave background: Sources and detection. In Proceedings of the Relativistic Gravitation and Gravitational Radiation, School of Physics, Les Houches, France, 26 September–6 October 1995; pp. 373–417. [Google Scholar]
- Allen, B.; Romano, J.D. Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities. Phys. Rev.
**1999**, D59, 102001. [Google Scholar] [CrossRef] [Green Version] - Kuroyanagi, S.; Chiba, T.; Takahashi, T. Probing the Universe through the Stochastic Gravitational Wave Background. J. Cosmol. Astropart. Phys.
**2018**, 1811, 38. [Google Scholar] [CrossRef] [Green Version] - Schmitz, K. LISA Sensitivity to Gravitational Waves from Sound Waves. Available online: https://doi.org/10.5281/zenodo.3837876 (accessed on 8 September 2020).
- Breitbach, M.; Kopp, J.; Madge, E.; Opferkuch, T.; Schwaller, P. Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors with Gravitational Waves. J. Cosmol. Astropart. Phys.
**2019**, 7, 7. [Google Scholar] [CrossRef] [Green Version] - Chala, M.; Krause, C.; Nardini, G. Signals of the electroweak phase transition at colliders and gravitational wave observatories. J. High Energy Phys.
**2018**, 7, 62. [Google Scholar] [CrossRef] [Green Version] - Madge, E.; Schwaller, P. Leptophilic dark matter from gauged lepton number: Phenomenology and gravitational wave signatures. J. High Energy Phys.
**2019**, 2, 48. [Google Scholar] [CrossRef] [Green Version] - Chen, C.-Y.; Kozaczuk, J.; Lewis, I.M. Non-resonant Collider Signatures of a Singlet-Driven Electroweak Phase Transition. J. High Energy Phys.
**2017**, 8, 96. [Google Scholar] [CrossRef] - Huang, P.; Long, A.J.; Wang, L.-T. Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves. Phys. Rev. D
**2016**, 94, 075008. [Google Scholar] [CrossRef] [Green Version] - Beniwal, A.; Lewicki, M.; Wells, J.D.; White, M.; Williams, A.G. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis. J. High Energy Phys.
**2017**, 8, 108. [Google Scholar] [CrossRef] [Green Version] - Dorsch, G.; Huber, S.; No, J. A strong electroweak phase transition in the 2HDM after LHC8. J. High Energy Phys.
**2013**, 10, 29. [Google Scholar] [CrossRef] [Green Version] - Dorsch, G.; Huber, S.; Mimasu, K.; No, J. Echoes of the Electroweak Phase Transition: Discovering a second Higgs doublet through A
_{0}→ZH_{0}. Phys. Rev. Lett.**2014**, 113, 211802. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Dorsch, G.; Huber, S.; Konstandin, T.; No, J. A Second Higgs Doublet in the Early Universe: Baryogenesis and Gravitational Waves. J. Cosmol. Astropart. Phys.
**2017**, 5, 52. [Google Scholar] [CrossRef] - Dorsch, G.; Huber, S.; Mimasu, K.; No, J. The Higgs Vacuum Uplifted: Revisiting the Electroweak Phase Transition with a Second Higgs Doublet. J. High Energy Phys.
**2017**, 12, 86. [Google Scholar] [CrossRef] [Green Version] - Megías, E.; Nardini, G.; Quirós, M. Cosmological Phase Transitions in Warped Space: Gravitational Waves and Collider Signatures. J. High Energy Phys.
**2018**, 9, 95. [Google Scholar] [CrossRef] [Green Version] - Huber, S.J.; Konstandin, T.; Nardini, G.; Rues, I. Detectable Gravitational Waves from Very Strong Phase Transitions in the General NMSSM. J. Cosmol. Astropart. Phys.
**2016**, 3, 36. [Google Scholar] [CrossRef] - Garcia-Pepin, M.; Quiros, M. Strong electroweak phase transition from Supersymmetric Custodial Triplets. J. High Energy Phys.
**2016**, 5, 177. [Google Scholar] [CrossRef] [Green Version] - Bian, L.; Guo, H.-K.; Shu, J. Gravitational Waves, baryon asymmetry of the universe and electric dipole moment in the CP-violating NMSSM. Chin. Phys. C
**2018**, 42, 093106. [Google Scholar] [CrossRef] - Demidov, S.; Gorbunov, D.; Kirpichnikov, D. Gravitational waves from phase transition in split NMSSM. Phys. Lett. B
**2018**, 779, 191. [Google Scholar] [CrossRef] - Bruggisser, S.; Harling, B.V.; Matsedonskyi, O.; Servant, G. Electroweak Phase Transition and Baryogenesis in Composite Higgs Models. J. High Energy Phys.
**2018**, 12, 99. [Google Scholar] [CrossRef] [Green Version] - LIGO Cosmology Working Group; Weir, D. Available online: http://ptplot.org (accessed on 8 September 2020).

**Figure 1.**Global picture of Laser Interferometer Space Antenna’s (LISA’s) sensitivity to the acoustic gravitational-wave (GW) signal from a strong first-order phase transition (SFOPT). See text.

**Figure 2.**Same as Figure 1, zoomed into the most relevant region of the ${f}_{\mathrm{peak}}$ – ${\Omega}_{\mathrm{tot}}$ parameter space.

**Figure 3.**Number of benchmark points above detection threshold in dependence of p, q, n, and ${t}_{\mathrm{data}}$. The color code reflects the spectrum of values in this table, ranging from 56 (red) to 263 (green).

**Figure 4.**Number of benchmark points above detection threshold for $\left(p,q,n\right)=\left(3,4,2\right)$. The color code reflects the relative number of observable points, ranging from $0\phantom{\rule{0.166667em}{0ex}}\%$ (red) to $100\phantom{\rule{0.166667em}{0ex}}\%$ (green).

**Table 1.**Parameters appearing in the fit function for the galactic confusion noise (GCN) spectrum ${S}_{\mathrm{gcn}}$ in Equation (20) as functions of the collected amount of data ${t}_{\mathrm{data}}$ [36]. Note that Ref. [36] works in units where $1\phantom{\rule{0.166667em}{0ex}}\mathrm{Hz}$ is set to 1.

${\mathit{t}}_{\mathbf{data}}$$\left[\mathbf{yr}\right]$ | $\mathit{\alpha}$ | $\mathit{\beta}$${[\mathbf{mHz}}^{-1}]$ | $\mathit{\kappa}$${[\mathbf{mHz}}^{-1}]$ | $\mathit{\gamma}$${[\mathbf{mHz}}^{-1}]$ | ${\mathit{f}}_{\mathbf{knee}}$$\left[\mathbf{mHz}\right]$ |
---|---|---|---|---|---|

0.5 | $0.133$ | $\phantom{-}0.243$ | $0.482$ | $0.917$ | $2.58$ |

1.0 | $0.171$ | $\phantom{-}0.292$ | $1.020$ | $1.680$ | $2.15$ |

2.0 | $0.165$ | $\phantom{-}0.299$ | $0.611$ | $1.340$ | $1.73$ |

4.0 | $0.138$ | $-0.221$ | $0.521$ | $1.680$ | $1.13$ |

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Schmitz, K.
LISA Sensitivity to Gravitational Waves from Sound Waves. *Symmetry* **2020**, *12*, 1477.
https://doi.org/10.3390/sym12091477

**AMA Style**

Schmitz K.
LISA Sensitivity to Gravitational Waves from Sound Waves. *Symmetry*. 2020; 12(9):1477.
https://doi.org/10.3390/sym12091477

**Chicago/Turabian Style**

Schmitz, Kai.
2020. "LISA Sensitivity to Gravitational Waves from Sound Waves" *Symmetry* 12, no. 9: 1477.
https://doi.org/10.3390/sym12091477