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Abstract: In this paper, the prediction of compressive cement strength using the fuzzy linear regression
(FLR) and adaptive neuro-fuzzy inference system (ANFIS) methods was studied. Specifically,
an accurate prediction method is needed as the modeling of cement strength is a difficult task,
which is based on its composite nature. However, many approaches are widely implemented in
strength-predicting problems, such as the artificial neural network (ANN), Mamdani fuzzy rules in
MATLAB, FLR and ANFIS models. Applying these methods and comparing the results with the
corresponding observed ones, we concluded that the ANFIS method successfully decreased the level
of uncertainty in predicting cement strength, as the average percentage error level was extremely
low. Although the FLR method had the highest average percentage error level compared with the
other methods, it provides a standard equation to estimate the output values by using symmetric
triangular fuzzy numbers and determines the most important factor in increasing compressive
strength, in contrast to ANFIS and ANN, which are black box models, and to the fuzzy method,
which uses rules without providing the specific way by which the results come out. Thus, ANFIS and
FLR are appropriate methods for dealing with engineering mathematical models by using fuzzy logic.
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1. Introduction

Concrete is recognized as the most broadly used material in the construction of buildings, subway
projects and other civil structures, which consists of cement, water and aggregates. Sometimes,
powdered or liquid additives are also included in the mixture in order to improve its specific properties,
such as the durability of the concrete, or to control setting or hardening. Concrete is widely used, as its
raw materials are available worldwide. Concrete’s properties depend on the quality of its materials.
One of the most important properties that it has is the high compressive strength at 28 days after
casting. Therefore, it is necessary to test the concrete’s compressive strength, so as to define the quality
and also the strength of the construction.

Cement is a material consisting of a binder within, widely used in the production of construction
essentials as it acquires strong stability and durability after hardening. In this research, CEM I
42.5R European standard EN197-1 [1] was used as the type of cement, containing 95–100% clinker
composition and 0–5% other additional constituents. Cement hydration is a complex process resulting
from water’s reaction with cement. There are many physical and chemical parameters that affect
cement hydration and, therefore, its compressive strength. One of them is the Portland cement clinker
composition [2], as it mainly consists of tricalcium silicate (C3S), which is responsible for the early
strength and early characteristics of cement, dicalcium silicate (C2S), which contributes to cement’s
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long-term compressive strength, tricalcium aluminate (C3A), which in a low amount provides resistance
to sulfates, tetracalcium aluminoferrite (C4AF) that works as a flux material and sometimes trioxide
sulfate (SO3) [3], which is a gypsum that is added to the clinker after its cooling for minimizing the
amount of grinding energy needed. Depending on its application, cement contains over 50–70% C3S,
15–30% C2S, 5–10% C3A, 5–15% C4AF [4] and less than 4% SO3 [3]. Cement hydration also depends on
the Blaine fineness of the cement particles, which ranges in value between 2000 and 5000 cm2/g, and by
the alkali content in the cement composition.

Portland cement production is not an environmentally friendly process as it releases a massive
amount of carbon dioxide (CO2) into the atmosphere, causing climate change and greenhouse gas
emissions. On the other hand, non-conventional cementitious materials [5–9] are being developed
in order to reduce environmental pollution and replace ordinary Portland cement with sustainable
materials like self-healing concretes or alternative geopolymer-based concretes, which seem to be
promising in concrete construction. Non-conventional cementitious materials also improve the
characteristics of the cement and increase its compressive strength. The ordinary cement compressive
strength can also be improved by incorporating nanoparticles [10] in its composition to increase the
density of the concrete. The prediction of the compressive strength of these types of concrete is a very
important process, as it provides an option to modify the mix proportion in circumstances where
the mandatory design strength is not attained, in order to avoid construction failures and substitute
successfully the stability offered by Portland cement. As indicated, analytical models that include the
effects of each of these factors on the compressive strength may be very complicated. Consequently,
the use of fuzzy regression models, adaptive neuro-fuzzy inference systems (ANFISes) [11–13], as well
as artificial neural networks (ANNs) [11,14,15] and fuzzy logic, seems to be a promising approach to
the strength prediction problem, providing useful tools in the concrete industry.

In a previous study [16], the 28-day compressive strength was predicted with the use of ANNs
and Mamdani fuzzy rules in MATLAB. The ANN method [17] was based on the structure of an
artificial neural network with three levels. The first layer (input), as well as the second layer (hidden),
had four neurons, and there was one output parameter, the compressive strength, in the last layer.
The inputs, which were C3S, SO3, Blaine fineness and alkali, were first normalized to ranges from 0.1
to 0.9, using the equation

X = α+ (b− α)·
(Xi −Xmini)

(Xmaxi −Xmini)
(1)

where α and b are the lowest and highest values of the range of normalization, respectively, Xmini and
Xmaxi are the lowest and highest values of each input, respectively, and Xi is the value of each input of
the ith node.

Then, those values were multiplied by the weight factors in order to train the model, with the use
of the equation

net j =
∑

xivi j (2)

where xi is the input parameter from the ith neuron and vij is the weight from the previous level
i in the next level j. Afterwards, the aforementioned values were transferred to the hidden layer.
For determining the activation level, the sigmoid transfer function was used with the following form:

f
(
net j

)
=

1
1 + e−net j

. (3)

Furthermore, a backpropagation algorithm [18] was used to minimize the error level between the
output value data and the calculated values, optimizing the weight vector with the following form:

E =
∑

P

∑
p
(yi − ti)

2 (4)
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in which yi is the vector of the calculated output value, ti is the target output, P is the number of
training patterns and p is the number of output neurons. The modification of the network weights was
accomplished by using the following equation:

vnew
ij = vold

i j − δ
dE
dvi j

(5)

where δ, the learning rate, was equal to 0.01. The model was trained for 20,000 epochs. More details on
the ANN method can be retrieved from [19].

The fuzzy logic algorithm was based on Mamdani rules and consisted of four components.
Fuzzification was the first one, where each variable was represented by degrees of membership
between the values 0 and 1. The variables were characterized as very low, low, medium and
high. Then, rules were defined in order to comprise all possible fuzzy combinations between the
processing parameters. Those rules were expressed in an If-Then conditional statement. In the fuzzy
inference engine, all the fuzzy rules were taken into account and the inputs were converted to the
corresponding outputs. The product method (prod) was used as an inference operator. Finally, in the
last component, defuzzification [20], outputs from the previous step were converted into a number
using the centroid method

u =

∑
i µ(xi)xi∑

i µ(xi)
(6)

where xi is the value of the output and µ(xi) is its membership value in the membership function.
In this study, the same inputs were applied in order to develop more effective fuzzy models to

predict the compressive strength of cement at 28 days. Fuzzy linear regression and ANFIS methods
were used to predict 50 sets of cement strength and the results of them were compared with those of
the ANN and fuzzy logic algorithm methods.

2. Fuzzy Linear Regression (FLR)

Linear regression [21] provides a crisp approach between a dependent output Y and independent
inputs X, using the following form:

Y = α0 + α1X1 + . . .+ αnXn + u (7)

where u includes the deviations between the observed and the predicted parameters, known as the
disturbance term.

Fuzzy linear regression is an alternative process of probabilistic specification, expressed as

Y = A0 + A1X1 + . . .+ AnXn (8)

where Ai are symmetric fuzzy numbers, which includes the inability to determine an exact association
between the dependent and independent parameters. They are expressed as A = (ri,ci)L, where ri

is the center in which the membership function is equal to 1 and c is the range of values. Thus,
the membership function [22] is defined as

µA(x) = L
(x− r

c

)
(9)

where L(x) is the symmetric reference function of a fuzzy number that satisfies the constraints below:

L(x) = L(−x), (10)

L(0) = 1, (11)

L(x) is decreasing in [0,∞). (12)
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Therefore, the membership function for the linear possibility Equation (8) is formed as

µY j

(
y j

)
= L

 y j − (r0 +
∑n

i=1 rixi j)

c0 +
∑n

i=1 ci |xi j|

 (13)

where i is the number of inputs and j is the number of sets. Then, the degree h is determined in order
to include the data in the estimated output Y, which is

µYj
(
y j

)
≥ h. (14)

In this study, the reference function L(x) had the following form:

L(x) = max(0, 1− |x|) (15)

where L(x) is decreasing in (0,1). As a result, the coefficients of the system (8) were symmetric triangular
fuzzy numbers and the following linear programming problem was turned out:

J = min{mc0 +
m∑

j=1

n∑
i=1

ci|xi j|} (16)

y j ≥ r0 +
n∑

i=1

rixi j − (1− h)

c0 +
n∑

i=1

ci|xi j|

 (17)

y j ≤ r0 +
n∑

i=1

rixi j + (1− h)

c0 +
n∑

i=1

ci|xi j|

 (18)

ci ≥ 0, i = 1, 2, . . . , n (19)

where the relations (17)–(19) were used to minimize the objective function in (16).
Furthermore, the simplex method was used to solve the linear programming problem by combining

the relations (16)–(19). The results of the fuzzy triangular numbers are represented in Table 1.

Table 1. The results of the fuzzy triangular numbers.

Variable Estimate Ri Estimate Ci SE T P-Value

A0 13.624 0.000 12.268 1.111 0.273
A1 0.411 0.056 0.135 3.047 0.004
A2 6.633 0.000 1.482 4.475 0.000
A3 −0.002 0.000 0.002 −0.802 0.427
A4 4.192 0.000 3.813 1.099 0.277

The equation of fuzzy linear regression was formed as follows:

Y = A0 + A1X1 + A2X2 + A3X3 + A4X4. (20)

With regard to the membership function, it depends on the distance of the observed output values
from the center of regression. In particular, the closer the 28-day compressive strength is to the center
of the regression, the higher the increase of the membership function is. The values of the root mean
square error (RMSE) and the mean absolute percentage error (MAPE) were calculated as

RMSE =

√∑n
t=1(et)

2

n
= 2.04 (21)
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MAPE = 100%
1
n

n∑
t=1

∣∣∣∣∣ et

At

∣∣∣∣∣ = 100%
1
n

n∑
t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣ = 3.28% (22)

where At and Ft are the observed and computed values, respectively, and n is the number of sets.
Theil’s inequality coefficient is a measure of the accuracy of regression and was equal to

Theil′s U =

√
1
n
∑n

t=1(Ft −At)
2√

1
n
∑n

t=1(Ft)
2 +

√
1
n
∑n

t=1(At)
2
= 0.019 (23)

which indicated that the fuzzy linear regression had a successful predictive capacity. The degree of the
fuzziness [21] of this model was formed as

F
(
Mh

)
=

√(
ch

0

)2
+

(
ch

1

)2
+ · · ·+

(
ch

n

)2
= 0.056 (24)

where ci contributes to the fuzziness of the system. In order to find the effect of independent inputs on
the calculation of the dependent variable Y, the degree of fuzziness was calculated separately for four
different models. Each model was comprised of three input variables instead of four and each time a
different variable was subtracted. The results are summarized in Table 2.

Table 2. The results of the degree of fuzziness.

Model with Included Inputs F(Mh)

SO3, Blaine, alkali 1.355
C3S, Blaine, alkali 0.639
C3S, SO3, alkali 0.577
C3S, SO3, Blaine 1.283

Taking those results into account, it was concluded that C3S was the most important factor in
increasing the compressive strength at 28 days, as it had the highest effect on the system’s degree of
fuzziness. It also constitutes 50–70% of cement’s composition, which defines it as the main component
in the cement. However, all variables were important for developing a successful fuzzy model to
predict the 28-day compressive strength of cement. More details on the fuzzy linear regression method
can be retrieved from [23,24].

3. Adaptive Neuro-Fuzzy Modeling (ANFIS)

ANFIS is a fuzzy model used as a method of constructing rule systems, by entering the data
of the prediction model to derive more efficient membership functions. The membership function
parameters are tuned with the use of methods based on ANNs, as ANFIS is a type of adaptive network
that functions as a fuzzy system. The structure of this model is shown in Figure 1 and it is composed
of four inputs, hidden layers and one output datum. The nodes of each level were connected to each
other through links that indicated the direction of the information of the neural network.
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In the first level, membership grades were generated for each input with the following form:

Oi,1 = µAi(x1) (25)

Oi,1 = µBi(x2) (26)

Oi,1 = µCi(x3) (27)

Oi,1 = µDi(x4) (28)

where µAi(x1), µBi(x2), µCi(x3) and µDi(x4) were the trapezoidal membership functions in this study and i
= 1,2,3. At each node, the incoming signals were multiplied and this information was sent to the output,
using the min or prod operator. The prod method was used in this study with the following form:

Oi,2 = µAi(x1)· µBi(x2)·µCi(x3)·µDi(x4) = wi (29)

where wi is the weight parameter from the ith neuron. In the third layer, the degree of membership
function of a rule from each node resulted, using the equation

Ii,3 = wi =
wi

w1 + w2 + w3 + w4
(30)

where (w1 + w2 + w3 + w4) is the total weights extracted from the previous level. Then, in the fourth
layer, each node was defined as

Ii,4 = wi fi = wi(pix + qiy + ri) (31)

where wi is the parameter from the previous layer and {pi, qi, ri} are the consequent parameters for each
rule. Thus, every node layer was specified as an adaptive node. In the final layer, all of the inputs were
used to calculate the output by using

Oi,5 =
∑

i

wi fi =
∑

i wi fi∑
i wi

. (32)

The ANFIS algorithm used Takagi–Sugeno–Kang rules and the output membership function was
a linear function derived from the input values, in contrast to the Mamdani system, where the output
of every rule was a fuzzy set.

The adjustment of the weights of each parameter provided minimization of the error level between
the observed and predicted values of the output. A hybrid learning algorithm that associates the
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least squares method and the backpropagation gradient descent method was used in order to train
Sugeno-type parameters and calculate input and output membership function parameters.

The model was trained for 20,000 epochs. The predicted and the observed outputs for testing data
are presented in Figure 2. The checkpoints coincided with the data, as the error level was extremely
low (MAPE = 0.0270%). Thus, the model responded satisfactorily to the observed data.
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4. Model Application

The estimation of 50 sets of the 28-day compressive strength of cement was analyzed by using
two fuzzy methods: fuzzy linear regression and ANFIS. The results of these methods are reported in
Table 3 in order to compare the two fuzzy models. According to the results, the fuzzy linear regression
and ANFIS methods successfully predicted the compressive strength of cement with small deviations.
The data, which were obtained from a previous study [16], had a limited range of values and led to
reliable predictions of the observed cement strength just within the aforementioned range. However,
the purpose of the model is to apply and control input parameters in more favorable experimental
conditions in order to provide the cement compressive strength with higher accuracy.

The values of C3S, SO3, Blaine fineness and alkali are the inputs, strength is the output, FLR (left),
FLR (center) and FLR (right) are the values of the fuzzy linear regression in the boundaries and in
the center of regression, µA(yi) is the membership grade of the FLR method and ANFIS presents the
results obtained from the ANFIS algorithm.

Table 3. Comprehensive strength of cement at 28 days as determined by the fuzzy linear regression
(FLR) and ANFIS methods across 50 sets.

C3S SO3 Blaine Alkali Strength FLR
(Left)

FLR
(Center)

FLR
(Right) µA(yi) ANFIS

54 3 3530 1.1 53.9 50.7 53.7 56.8 0.9 53.9
54.8 2.9 3680 0.9 51.9 49.2 52.3 55.3 0.9 51.9
57.3 2.8 3560 1 53.9 50.1 53.3 56.5 0.8 53.9
64.6 2.6 3850 1 50.8 50.8 54.4 58 0 50.8
56.9 2.7 3580 0.8 54.5 48.4 51.6 54.8 0.1 54.5
61.3 2.3 3780 0.9 50.4 47.3 50.8 54.2 0.9 50.5
62.3 2.8 3640 0.9 55.4 51.3 54.8 58.3 0.8 55.4
62.4 2.8 3590 0.9 58.4 51.4 54.9 58.4 0 58.4
64.6 2.5 4090 0.8 54.8 48.8 52.5 56.1 0.4 54.7
59.3 2.8 3500 1.1 51.8 51.3 54.6 58 0.1 51.8
61.8 2.7 3630 1.1 51.3 51.3 54.8 58.2 0 51.3
61.3 3 3580 1 54.7 52.8 56.2 59.7 0.6 54.7
60.4 2.6 3680 1 54.1 49.6 53 56.4 0.7 54.1
55.6 3.1 3510 1 54.5 51.6 54.7 57.8 0.9 54.6
62.4 2.5 3590 1.1 51.5 50.3 53.8 57.2 0.4 51.5
63.1 2.6 3540 0.9 52.1 50.4 54 57.5 0.5 52.1
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Table 3. Cont.

C3S SO3 Blaine Alkali Strength FLR
(Left)

FLR
(Center)

FLR
(Right) µA(yi) ANFIS

61.2 2.7 3610 0.9 51.7 50.3 53.7 57.1 0.4 51.7
55.6 2.7 3620 0.9 54.2 48.3 51.4 54.5 0.1 54.2
67.3 2.6 4020 0.8 53.8 50.6 54.4 58.1 0.8 53.8
58.7 3 3550 0.9 51.5 51.5 54.8 58.1 0 51.5
65.4 2.3 3730 0.9 48.9 48.9 52.6 56.2 0 48.9
58 2.7 3420 1 53.2 49.9 53.2 56.4 0.99 53.3
65 2.5 4070 0.8 54.7 49 52.7 56.3 0.4 54.7
62 2.9 3720 1 54.3 52.1 55.6 59.1 0.6 54.3

61.4 2.7 3840 0.9 52.5 49.9 53.4 56.8 0.7 52.5
63.5 2.5 3540 1 51.3 50.3 53.9 57.4 0.3 51.3
62.8 2.3 3580 0.9 51.1 48.3 51.8 55.3 0.8 51.1
56.4 3 3370 1.1 52.5 51.9 55 58.2 0.2 52.5
62.8 3 3750 1.1 54.1 53.4 56.9 60.5 0.2 54.1
58.9 3 3540 1 53.5 52 55.3 58.6 0.5 53.5
62.3 2.5 3910 0.9 53.6 48.8 52.3 55.8 0.6 53.6
57.7 2.7 3480 1 55.4 49.7 52.9 56.2 0.2 55.5
55.8 3.1 3420 0.9 53.7 51.4 54.5 57.6 0.7 53.7
55.9 2.8 3620 1 55.6 49.5 52.6 55.7 0.04 55.6
60.7 2.8 3740 1.1 55.2 51.4 54.8 58.2 0.9 55.2
50.3 2.5 3750 1.1 55.5 48.9 52.2 55.5 0 55.5
60.8 2.2 3520 1.1 49.8 47.8 51.2 54.6 0.6 49.8
60.7 3 3840 0.9 55.6 51.7 55.1 58.5 0.8 55.6
63.2 2.5 4010 0.9 52.1 48.9 52.5 56 0.9 52.1
59.3 2.6 3450 1 51.6 49.7 53 56.3 0.6 51.6
65.8 2.6 4050 0.9 53 50.4 54.1 57.8 0.7 53
57.4 2.5 3390 1.1 50.5 48.9 52.1 55.3 0.5 50.7
62 2.4 3490 1 54 49.2 52.7 56.2 0.6 54

59.7 2.2 3890 1 52.1 46.3 49.7 53 0.3 52.1
56.8 2.7 3620 1 53.8 49.1 52.3 55.5 0.5 53.8
61.7 2.4 3630 0.9 53.6 48.4 51.9 55.3 0.5 53.6
63.9 2.8 3680 0.9 53 51.7 55.2 58.8 0.4 53
61.6 2.8 3630 1.1 53.5 51.9 55.3 58.8 0.5 53.5
64.9 2.4 3900 1 49.9 49.5 53.1 56.8 0.1 49.9
61 2.8 3700 0.9 54.2 50.7 54.1 57.5 0.98 54.2

For a better classification, the root mean square error (RMSE) and the mean absolute percentage
error (MAPE) were determined for every method and are presented in Table 4, where the values of the
ANN and fuzzy model methods were calculated in a previous study [16].

Table 4. The root mean square error (RMSE) and mean absolute percentage error (MAPE) results of all
of the methods.

Metric ANN Fuzzy Fuzzy Linear Regression ANFIS

RMSE 1.70 1.84 2.04 0.04
MAPE 2.41% 2.69% 3.28% 0.0270%

In Figure 3, the fuzzy linear regression is shown, where the boundaries and the center of the
regression, as well as the observed values, are represented.
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As indicated, all methods had satisfactory results, with small deviations from the observed values
of strength. Although the fuzzy linear regression method had a higher RMSE factor than the ANN,
ANFIS and fuzzy models, it provided a reliable way to estimate the compressive strength of cement.
This method uses a specific equation to compute the predicted values in order to define the coefficients
on which the input variables depend for obtaining the result. In addition, the FLR method is an
effective way to define the degree of fuzziness in order to calculate the effect of independent inputs
on the dependent variable and determine the major factor in increasing the compressive strength of
cement at 28 days.

However, the ANFIS algorithm provided the most accurate approach to calculating the compressive
strength. The value of the mean square error (0.04) was lower compared with that of all of the other
methods, which made the results of the ANFIS method quite satisfactory. The MAPE was computed
as 0.0270%, which proved that the values of the observed and calculated outputs were very close.
Although ANFIS is a black box model, as there is no access to the rules that have been created,
the valid combination of verbal rules, as well as the successful choice of membership function, make it
a successful fuzzy model.

5. Conclusions

The estimation of the best compressive strength of cement data is not an easy process, as it contains
highly complex factors. In this study, fuzzy linear regression and ANFIS methods were developed in
order to create more effective fuzzy models to estimate the 28-day compressive strength of cement.
In particular, four inputs were applied in order to determine the output, which was the compressive
strength of the cement. After comparing these methods with ANN and fuzzy logic models, which were
both studied in a previous publication [16], and evaluating the results, we concluded that the ANFIS
algorithm provided the most accurate values of the cement’s compressive strength, as the value of the
mean square error was extremely low (0.04).

It was also demonstrated that fuzzy linear regression was a more valid method as it provided
a standard equation to estimate the output values, although it yielded higher error values than the
other fuzzy models. This is in contrast to the black box methods of the ANFIS algorithm and the ANN
model, as well as fuzzy logic, which used rules without providing the specific way by which the results
come out. Another advantage of the FLR method was the determination of the degree of fuzziness,
which specified the consequence of the independent variables for the compressive strength of cement.

In conclusion, all methods led to reliable results with relatively small deviations. Even though the
ANFIS algorithm provided the smallest deviations from the observed values, the most valid method
for predicting the compressive strength of cement was the fuzzy linear regression method, which gave
the most reliable estimation of the cement’s strength by providing a standard equation. This proves
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its capability of dealing with the perceptual uncertainties that are involved in strength prediction
problems and leads to successful predictions of the predicted cement strength values, improving the
design and providing a useful modeling tool in the field of engineering.
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