Rephasing Invariant for Three-Neutrino Oscillations Governed by a Non-Hermitian Hamiltonian
Abstract
:1. Introduction
2. Master Equation
- (i)
- high neutrino energy threshold for production;
- (ii)
- sharp shrinkage of the phase spaces for the CC interactions of and with protons, neutrons, and nuclei;
- (iii)
- kinematic correction factors () to the nucleon structure functions (the corresponding structures are negligible for the electron production and small for the muon production);
- (iv)
- the differences and are relatively slow varying functions of (anti)neutrino energy, having gently sloping maxima in the range of 10–100 PeV and vanishing at super-high energies.
3. Mixing Matrices In Matter
4. Rephasing Invariant In Matter
5. Summary
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PMNS | Pontecorvo-Maki-Nakagawa-Sakata (mixing matrix) |
MSW | Mikheev-Smirnov-Wolfenstein (mechanism, equation) |
KM | Kobayashi-Maskawa (representation of mixing matrix) |
CK | Chau-Keung (representation of mixing matrix) |
CC | Charged Current |
NC | Neutral Current |
AMU | Atomic Mass Unit |
Charge Parity | |
LHS | Left-Hand Side |
RHS | Right-Hand Side |
QED | Quod Erat Demonstrandum (Lat.) |
Appendix A. Proof of The Theorem
Appendix B. Rephasing Invariant In Vacuum
References
- Pérez de los Heros, C. Probing Particle Physics with Neutrino Telescopes; World Scientific: Singapore, 2020. [Google Scholar] [CrossRef]
- Cleveland, B.T.; Daily, T.; Davis, R., Jr.; Distel, J.R.; Lande, K.; Lee, C.K.; Wildenhain, P.S.; Ullman, J. Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 1998, 496, 505–526. [Google Scholar] [CrossRef]
- Kaether, F.; Hampel, W.; Heusser, G.; Kiko, J.; Kirsten, T. Reanalysis of the GALLEX solar neutrino flux and source experiments. Phys. Lett. B 2010, 685, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Abdurashitov, J.N.; Gavrin, V.N.; Gorbachev, V.V.; Gurkina, P.P.; Ibragimova, T.V.; Kalikhov, A.V.; Khairnasov, N.G.; Knodel, T.V.; Mirmov, I.N.; Shikhin, A.A.; et al. Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period. Phys. Rev. C 2009, 80, 015807. [Google Scholar] [CrossRef]
- Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 1998, 81, 1562–1567. [Google Scholar] [CrossRef] [Green Version]
- Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G.J.; Bogert, D.; Cao, S.V.; Castromonte, C.M.; et al. Combined analysis of νμ disappearance and νμ → νe appearance in MINOS using accelerator and atmospheric neutrinos. Phys. Rev. Lett. 2014, 112, 191801. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.H.; Aoki, S.; Bhang, H.; Boyd, S.; Casper, D.; Choi, J.H.; Fukuda, S.; Fukuda, Y.; Gajewski, W.; Hara, T.; et al. Indications of neutrino oscillation in a 250 km long baseline experiment. Phys. Rev. Lett. 2003, 90, 041801. [Google Scholar] [CrossRef] [Green Version]
- Ashie, Y.; Hosaka, J.; Ishihara, K.; Itow, Y.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; et al. Evidence for an oscillatory signature in atmospheric neutrino oscillation. Phys. Rev. Lett. 2004, 93, 101801. [Google Scholar] [CrossRef] [Green Version]
- Abe, S.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; et al. Precision measurement of neutrino oscillation parameters with KamLAND. Phys. Rev. Lett. 2008, 100, 221803. [Google Scholar] [CrossRef]
- An, F.P.; Bai, J.Z.; Balantekin, A.B.; Band, H.R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Boddy, K.; Brown, R.L.; et al. Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 2012, 108, 171803. [Google Scholar] [CrossRef] [Green Version]
- Beuthe, M. Oscillations of neutrinos and mesons in quantum field theory. Phys. Rept. 2003, 375, 105–218. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C.; Kim, C.W. Fundamentals of Neutrino Physics and Astrophysics; Oxford University Press: Oxford, UK, 2007. [Google Scholar] [CrossRef] [Green Version]
- Kayser, B.; Kopp, J. Testing the wave packet approach to neutrino oscillations in future experiments. arXiv 2010, arXiv:hep-ph/1005.4081. [Google Scholar]
- Grimus, W.; Stockinger, P. Real oscillations of virtual neutrinos. Phys. Rev. D 1996, 54, 3414–3419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardall, C.Y.; Chung, D.J.H. The MSW effect in quantum field theory. Phys. Rev. D 1999, 60, 073012. [Google Scholar] [CrossRef] [Green Version]
- Stockinger, P. Introduction to a field-theoretical treatment of neutrino oscillations. Pramana 2000, 54, 203–214. [Google Scholar] [CrossRef]
- Beuthe, M. Towards a unique formula for neutrino oscillations in vacuum. Phys. Rev. D 2002, 66, 013003. [Google Scholar] [CrossRef] [Green Version]
- Giunti, C.; Kim, C.W.; Lee, J.A.; Lee, U.W. On the treatment of neutrino oscillations without resort to weak eigenstates. Phys. Rev. D 1993, 48, 4310–4317. [Google Scholar] [CrossRef] [Green Version]
- Akhmedov, E.K.; Kopp, J. Neutrino oscillations: Quantum mechanics vs. quantum field theory. J. High Energy Phys. 2010, 1004, 8. [Google Scholar] [CrossRef] [Green Version]
- Naumov, D.V.; Naumov, V.A. A Diagrammatic treatment of neutrino oscillations. J. Phys. G 2010, 37, 105014. [Google Scholar] [CrossRef]
- Berezinsky, V.S.; Gazizov, A.Z.; Zatsepin, G.T.; Rozental, I.L. On penetration of high-energy neutrinos through earth and a possibility of their detection by means of EAS. Sov. J. Nucl. Phys. 1986, 43, 406. [Google Scholar]
- Naumov, V.A.; Perrone, L. Neutrino propagation through dense matter. Astropart. Phys. 1999, 10, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Vincent, A.C.; Argüelles, C.A.; Kheirandish, A. High-energy neutrino attenuation in the Earth and its associated uncertainties. J. Cosmol. Astropart. Phys. 2017, 1711, 12. [Google Scholar] [CrossRef] [Green Version]
- Korenblit, S.E.; Kuznetsov, V.E.; Naumov, V.A. Geometric phases for three-level non-Hermitian system. In Proceedings of the International Workshop on “Quantum Systems: New Trends and Methods”, Minsk, Belarus, 23–29 May 1994; Barut, A.O., Feranchuk, I.D., Shnir, Y.M., Tomil’chik, L.M., Eds.; World Scientific: Singapore, 1995; pp. 209–217. [Google Scholar]
- Naumov, V.A. High-energy neutrino oscillations in absorbing matter. Phys. Lett. B 2002, 529, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.-Y. Sterile neutrinos as a possible explanation for the upward air shower events at ANITA. Phys. Rev. D 2018, 98, 043019. [Google Scholar] [CrossRef] [Green Version]
- Luo, S. Neutrino oscillation in dense matter. Phys. Rev. D 2020, 101, 033005. [Google Scholar] [CrossRef] [Green Version]
- Jarlskog, C. Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP nonconservation. Phys. Rev. Lett. 1985, 55, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Wolfenstein, L. Neutrino oscillations in matter. Phys. Rev. D 1978, 17, 2369–2374. [Google Scholar] [CrossRef]
- Mikheyev, S.P.; Smirnov, A.Y. Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos. Sov. J. Nucl. Phys. 1985, 42, 913–917. [Google Scholar]
- Mikheev, S.P.; Smirnov, A.Y. Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy. Nuovo Cim. C 1986, 9, 17–26. [Google Scholar] [CrossRef]
- Naumov, V.A. Three neutrino oscillations in matter and topological phases. Sov. Phys. JETP 1992, 74, 1–8. [Google Scholar]
- Harrison, P.F.; Scott, W.G. CP and T violation in neutrino oscillations and invariance of Jarlskog’s determinant to matter effects. Phys. Lett. B 2000, 476, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Krastev, P.I.; Petcov, S.T. Resonance amplification and T-violation effects in three neutrino oscillations in the Earth. Phys. Lett. B 1988, 205, 84–92. [Google Scholar] [CrossRef]
- Yokomakura, H.; Kimura, K.; Takamura, A. Matter enhancement of T violation in neutrino oscillation. Phys. Lett. B 2000, 496, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Parke, S.J.; Weiler, T.J. Optimizing T violating effects for neutrino oscillations in matter. Phys. Lett. B 2001, 501, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.-Z. Sum rules of neutrino masses and CP violation in the four neutrino mixing scheme. Phys. Rev. D 2001, 64, 033005. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, O. Vacuum mimicking phenomena in neutrino oscillations. Phys. Lett. B 2001, 516, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.-L.; Xing, Z.-Z. Rephasing invariants of CP and T violation in the four neutrino mixing models. Phys. Rev. D 2002, 65, 073020. [Google Scholar] [CrossRef] [Green Version]
- Gluza, J.; Zrałek, M. Parameters’ domain in three flavor neutrino oscillations. Phys. Lett. B 2001, 517, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.F.; Scott, W.G. Neutrino matter effect invariants and the observables of neutrino oscillations. Phys. Lett. B 2002, 535, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.; Takamura, A.; Yokomakura, H. Exact formula of probability and CP violation for neutrino oscillations in matter. Phys. Lett. B 2002, 537, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Minakata, H.; Nunokawa, H.; Parke, S.J. CP and T trajectory diagrams for a unified graphical representation of neutrino oscillations. Phys. Lett. B 2002, 537, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.; Takamura, A.; Yokomakura, H. Exact formulas and simple CP dependence of neutrino oscillation probabilities in matter with constant density. Phys. Rev. D 2002, 66, 073005. [Google Scholar] [CrossRef] [Green Version]
- Yokomakura, H.; Kimura, K.; Takamura, A. Overall feature of CP dependence for neutrino oscillation probability in arbitrary matter profile. Phys. Lett. B 2002, 544, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Leung, C.N.; Wong, Y.Y.Y. T violation in flavor oscillations as a test for relativity principles at a neutrino factory. Phys. Rev. D 2003, 67, 056005. [Google Scholar] [CrossRef] [Green Version]
- Wong, Y.Y.Y. T violation tests for relativity principles. J. Phys. G 2003, 29, 1857–1860. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.; Ohlsson, T. Extrinsic CPT violation in neutrino oscillations in matter. Phys. Rev. D 2004, 69, 013003. [Google Scholar] [CrossRef] [Green Version]
- Harrison, P.F.; Scott, W.G.; Weiler, T.J. Exact matter covariant formulation of neutrino oscillation probabilities. Phys. Lett. B 2003, 565, 159–168. [Google Scholar] [CrossRef]
- Xing, Z.-Z. Flavor mixing and CP violation of massive neutrinos. Int. J. Mod. Phys. A 2004, 19, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Kimura, K.; Takamura, A.; Yokomakura, H. Analytic formulation of neutrino oscillation probability in constant matter. J. Phys. G 2003, 29, 1839–1842. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, Z.-Z. Leptonic unitarity triangles in matter. Eur. Phys. J. C 2005, 41, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Jarlskog, C. Invariants of lepton mass matrices and CP and T violation in neutrino oscillations. Phys. Lett. B 2005, 609, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.-Z.; Zhang, H. Reconstruction of the neutrino mixing matrix and leptonic unitarity triangles from long-baseline neutrino oscillations. Phys. Lett. B 2005, 618, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Takamura, A.; Kimura, K. Large non-perturbative effects of small and sinθ13 on neutrino oscillation and CP violation in matter. J. High Energy Phys. 2006, 1, 53. [Google Scholar] [CrossRef] [Green Version]
- Nunokawa, H.; Parke, S.J.; Valle, J.W.F. CP violation and neutrino oscillations. Prog. Part. Nucl. Phys. 2008, 60, 338–402. [Google Scholar] [CrossRef] [Green Version]
- Kneller, J.P.; McLaughlin, G.C. Three flavor neutrino oscillations in matter: Flavor diagonal potentials, the adiabatic basis and the CP phase. Phys. Rev. D 2009, 80, 053002. [Google Scholar] [CrossRef]
- Chiu, S.H.; Kuo, T.K.; Liu, L.X. Neutrino mixing in matter. Phys. Lett. B 2010, 687, 184–187. [Google Scholar] [CrossRef] [Green Version]
- Oki, H.; Yasuda, O. Sensitivity of the T2KK experiment to the non-standard interaction in propagation. Phys. Rev. D 2010, 82, 073009. [Google Scholar] [CrossRef] [Green Version]
- Asano, K.; Minakata, H. Large-θ13 perturbation theory of neutrino oscillation for long-baseline experiments. J. High Energy Phys. 2011, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.-L. The Kobayashi-Maskawa parametrization of lepton flavor mixing and its application to neutrino oscillations in matter. Phys. Rev. D 2011, 84, 113012. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.-Z. Leptonic commutators and clean T violation in neutrino oscillations. Phys. Rev. D 2013, 88, 017301. [Google Scholar] [CrossRef] [Green Version]
- Minakata, H.; Parke, S.J. Simple and compact expressions for neutrino oscillation probabilities in matter. J. High Energy Phys. 2016, 1, 180. [Google Scholar] [CrossRef]
- Xing, Z.-Z.; Zhu, J.-Y. Analytical approximations for matter effects on CP violation in the accelerator-based neutrino oscillations with E ≲ 1 GeV. J. High Energy Phys. 2016, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Denton, P.B.; Minakata, H.; Parke, S.J. Compact perturbative expressions for neutrino oscillations in matter. J. High Energy Phys. 2016, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-F.; Zhang, J.; Zhou, S.; Zhu, J.-Y. Looking into analytical approximations for three-flavor neutrino oscillation probabilities in matter. J. High Energy Phys. 2016, 12, 109. [Google Scholar] [CrossRef]
- Zhou, S. Symmetric formulation of neutrino oscillations in matter and its intrinsic connection to renormalization-group equations. J. Phys. G 2017, 44, 044006. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Kneller, J.P.; Perkins, K.M. Multi-flavor effects in stimulated transitions of neutrinos. arXiv 2017, arXiv:hep-ph/1706.01339. [Google Scholar]
- Xing, Z.-Z.; Zhou, S.; Zhou, Y.-L. Renormalization-group equations of neutrino masses and flavor mixing parameters in matter. J. High Energy Phys. 2018, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.-Z.; Zhou, S. Naumov- and Toshev-like relations in the renormalization-group evolution of quarks and Dirac neutrinos. Chin. Phys. C 2018, 42, 103105. [Google Scholar] [CrossRef]
- Petcov, S.T.; Zhou, Y.L. On neutrino mixing in matter and CP and T violation effects in neutrino oscillations. Phys. Lett. B 2018, 785, 95–104. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, S. Analytical solutions to renormalization-group equations of effective neutrino masses and mixing parameters in matter. J. High Energy Phys. 2019, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Denton, P.B.; Parke, S.J. Simple and precise factorization of the Jarlskog invariant for neutrino oscillations in matter. Phys. Rev. D 2019, 100, 053004. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.-Z.; Zhu, J.-Y. Sum rules and asymptotic behaviors of neutrino mixing in dense matter. Nucl. Phys. B 2019, 949, 114803. [Google Scholar] [CrossRef]
- Denton, P.B.; Parke, S.J.; Zhang, X. Neutrino oscillations in matter via eigenvalues. Phys. Rev. D 2020, 101, 093001. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, S. On the properties of the effective Jarlskog invariant for three-flavor neutrino oscillations in matter. Nucl. Phys. B 2020, 950, 114867. [Google Scholar] [CrossRef]
- Xing, Z.-Z. Flavor structures of charged fermions and massive neutrinos. Phys. Rept. 2020, 854, 1–147. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S. Continuous and discrete symmetries of renormalization group equations for neutrino oscillations in matter. arXiv 2020, arXiv:hep-ph/2004.10570. [Google Scholar]
- Zhu, J.-Y. Radiative corrections to the lepton flavor mixing in dense matter. J. High Energy Phys. 2020, 5, 97. [Google Scholar] [CrossRef]
- Minakata, H. Neutrino amplitude decomposition: Toward observing the atmospheric—Solar wave interference. arXiv 2020, arXiv:hep-ph/2006.16594. [Google Scholar]
- D’Olivo, J.C.; Nieves, J.F.; Torres, M. Finite temperature corrections to the effective potential of neutrinos in a medium. Phys. Rev. D 1992, 46, 1172–1179. [Google Scholar] [CrossRef]
- Goldberger, M.L.; Watson, K.M. Collision Theory; John Wiley & Sons, Inc.: New York, NY, USA, 1967. [Google Scholar]
- Botella, F.J.; Lim, C.S.; Marciano, W.J. Radiative corrections to neutrino indices of refraction. Phys. Rev. D 1987, 35, 896–901. [Google Scholar] [CrossRef]
- Horvat, R.; Pisk, K. Radiative corrections for forward coherent neutrino scattering. Nuovo Cim. A 1989, 102, 1247–1253. [Google Scholar] [CrossRef]
- Paschos, E.A.; Yu, J.Y. Neutrino interactions in oscillation experiments. Phys. Rev. D 2002, 65, 033002. [Google Scholar] [CrossRef] [Green Version]
- Kuzmin, K.S.; Lyubushkin, V.V.; Naumov, V.A. Fine-tuning parameters to describe the total charged-current neutrino-nucleon cross section. Phys. Atom. Nucl. 2006, 69, 1857–1871. [Google Scholar] [CrossRef]
- Blennow, M.; Coloma, P.; Fernandez-Martinez, E.; Hernandez-Garcia, J.; Lopez-Pavon, J. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions. J. High Energy Phys. 2017, 4, 153. [Google Scholar] [CrossRef]
- Capozzi, F.; Chatterjee, S.S.; Palazzo, A. Neutrino mass ordering obscured by nonstandard interactions. Phys. Rev. Lett. 2020, 124, 111801. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, R.; Quigg, C.; Reno, M.H.; Sarcevic, I. Ultrahigh-energy neutrino interactions. Astropart. Phys. 1996, 5, 81–110. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, R.; Quigg, C.; Reno, M.H.; Sarcevic, I. Neutrino interactions at ultrahigh-energies. Phys. Rev. D 1998, 58, 093009. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Q. Hunting the Glashow resonance with PeV neutrino telescopes. J. Cosmol. Astropart. Phys. 2020, 2003, 5. [Google Scholar] [CrossRef]
- Langacker, P.; Petcov, S.T.; Steigman, G.; Toshev, S. On the Mikheev–Smirnov–Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter. Nucl. Phys. B 1987, 282, 589–609. [Google Scholar] [CrossRef] [Green Version]
- Bilenky, S.M.; Petcov, S.T. Massive neutrinos and neutrino oscillations. Rev. Mod. Phys. 1987, 59, 671–754. [Google Scholar] [CrossRef]
- Cheng, H.-Y. Cosmological baryon production in spontaneous CP violating models without strong CP problem. Phys. Rev. D 1986, 34, 3824–3830. [Google Scholar] [CrossRef]
- Naumov, V.A. Three neutrino oscillations in matter, CP violation and topological phases. Int. J. Mod. Phys. D 1992, 1, 379–399. [Google Scholar] [CrossRef]
- Naumov, V.A. Berry’s phases for three neutrino oscillations in matter. Phys. Lett. B 1994, 323, 351–359. [Google Scholar] [CrossRef]
- Toshev, S. Maximal T violation in matter. Phys. Lett. B 1989, 226, 335–340. [Google Scholar] [CrossRef]
- Kobayashi, M.; Maskawa, T. CP Violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 1973, 49, 652–657. [Google Scholar] [CrossRef] [Green Version]
- Chau, L.L.; Keung, W.Y. Comments on the parametrization of the Kobayashi–Maskawa matrix. Phys. Rev. Lett. 1984, 53, 1802–1805. [Google Scholar] [CrossRef] [Green Version]
- Fritzsch, H. How to describe weak-interaction mixing and maximal CP violation? Phys. Rev. D 1985, 32, 3058–3061. [Google Scholar] [CrossRef]
- Kuznetsov, V.E.; Naumov, V.A. Relationship between the Kobayashi–Maskawa and Chau–Keung presentations of the quark mixing matrix. Nuovo Cim. A 1995, 108, 1451–1456. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumov, D.V.; Naumov, V.A.; Shkirmanov, D.S. Rephasing Invariant for Three-Neutrino Oscillations Governed by a Non-Hermitian Hamiltonian. Symmetry 2020, 12, 1285. https://doi.org/10.3390/sym12081285
Naumov DV, Naumov VA, Shkirmanov DS. Rephasing Invariant for Three-Neutrino Oscillations Governed by a Non-Hermitian Hamiltonian. Symmetry. 2020; 12(8):1285. https://doi.org/10.3390/sym12081285
Chicago/Turabian StyleNaumov, Dmitry V., Vadim A. Naumov, and Dmitry S. Shkirmanov. 2020. "Rephasing Invariant for Three-Neutrino Oscillations Governed by a Non-Hermitian Hamiltonian" Symmetry 12, no. 8: 1285. https://doi.org/10.3390/sym12081285