Ferroelectric and Electrical Properties Optimization of Mg-doped BiFeO3 Flexible Multiferroic Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuniharu, T.; Toshitake, T.; Johnny, C.H.; Hyunhyub, K.; Andrew, G.G.; Paul, W.L.; Ronald, S.F.; Ali, J. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821–826. [Google Scholar] [CrossRef]
- Hyuk, J.K.; Hong, S.S.; Sunkook, K.; Woong, C.; Youngtea, C.; InSeo, K.; SangYoon, L. Mechanically and optically reliable folding structure with a hyperelastic material for seamless foldable displays. Appl. Phys. Lett. 2011, 98, 151904. [Google Scholar] [CrossRef]
- Ji, Y.; Zeigler, D.F.; Lee, D.S.; Choi, H.; Jen, A.K.; Ko, H.C.; Kim, T.W. Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture. Nat. Commun. 2013, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.Y.; Luo, Z.; Zhao, L.T.; Liu, C.C.; Ma, C.; Lin, Y.; Gao, G.Y.; Chen, Z.W.; Bao, Z.W.; Jin, X.; et al. BiFeO3-Based Flexible Ferroelectric Memristors for Neuromorphic Pattern Recognition. Appl. Electron. Mater. 2020, 2, 1081–1089. [Google Scholar] [CrossRef]
- Qing, C.; Hoon, S.K.; Ninad, P.; Jaydeep, P.K.; Congjun, W.; Moonsub, S.; Kaushik, R.; Muhammad, A.A.; John, A.R. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500. [Google Scholar] [CrossRef]
- Ji-Hee, Y.; Da-Jeong, Y.; Gi-Ho, S.; Seong-Min, K.; Myung-Han, Y.; Sung-Min, Y. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrate. Jpn. J. Appl. Phys. 2018, 57, 03DB02. [Google Scholar] [CrossRef]
- Hye-Won, Y.; Ho-Kun, W.; Soong-Ju, O.; Sung-Hoon, H. Flexible NiO nanocrystal-based resistive memory device fabricated by low temperature solution-process. Curr. Appl. Phys. 2020, 20, 288–292. [Google Scholar] [CrossRef]
- Gustau, C.; James, F.S. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Dong, S.; Cheng, J.; Li, J.; Viehland, D. Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb (Zr, Ti) O3 under resonant drive. Appl. Phys. Lett. 2003, 83, 4812–4814. [Google Scholar] [CrossRef]
- Li, Y.; Cao, W.Q.; Yuan, J.; Wang, D.W.; Cao, M.S. Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic-dielectric synergy. J. Mater. Chem. C 2015, 3, 9276–9282. [Google Scholar] [CrossRef]
- Li, Y.; Cao, M.S.; Wang, D.W.; Yuan, J. High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency. RSC Adv. 2015, 5, 77184–77191. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D.G.; Waghmare, U.V.; et al. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Ponzoni, C.; Rosa, R.; Cannio, M.; Buscaglia, V.; Finocchio, E.; Leonelli, C. Optimization of BFO microwave-hydrothermal synthesis: Influence of process parameters. J. Alloys Compd. 2013, 558, 150–159. [Google Scholar] [CrossRef]
- Huang, F.; Lu, X.; Lin, W.; Wu, X.; Kan, Y.; Zhu, J. Effect of Nd dopant on magnetic and electric properties of BiFeO3 thin films prepared by metal organic deposition method. Appl. Phys. Lett. 2006, 89, 242914. [Google Scholar] [CrossRef]
- Raghavan, C.M.; Jin-Won, K.; Hong-Joo, K.; Wun-Jae, K.; Sung-Sik, K. Preparation and properties of rare earth (Eu, Tb, Ho) and transition metal (Co) co-doped BiFeO3 thin films. J. Sol Gel Sci. Technol. 2012, 64, 178–183. [Google Scholar] [CrossRef]
- Wu, J.G.; Xiao, D.Q.; Wu, W.J.; Zhu, J.G.; Wang, J. Effect of dwell time during sintering on piezoelectric properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics. J. Alloys Compd. 2011, 509, 359–361. [Google Scholar] [CrossRef]
- Rizvi, M.; Hakim, M.A.; Basith, M.A.; Hossain, M.S.; Ahmmad, B.; Zubair, M.A.; Hussain, A. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3. AIP Adv. 2016, 6, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Saxena, P.; Kumar, A.; Varshney, D. Improved dielectric and ferroelectric properties of dual-site substituted rhombohedral structured BiFeO3 multiferroics. J. Alloys Compd. 2016, 682, 418–423. [Google Scholar] [CrossRef]
- Dutta, D.P.; Mandal, B.P.; Naik, R.; Lawes, G.; Tyagi, A.K. Magnetic, ferroelectric, and magnetocapacitive properties of sonochemically synthesized Sc-Doped BiFeO3 nanoparticles. J. Phys. Chem. C 2016, 117, 2382–2389. [Google Scholar] [CrossRef]
- Wang, D.; Wang, M.; Liu, F.; Cui, Y.; Zhao, Q. Sol-gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization. Ceram. Inter. 2015, 41, 8768–8772. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Pei, L.; Wang, J.; Yu, B.; Wang, X.; Zhao, X. Structural and multiferroic properties of the Ce-doped BiFeO3 thin films. J. Alloys Compd. 2010, 493, 544–548. [Google Scholar] [CrossRef]
- Masaki, A.; Hironori, K.; Alexei, A.B.; Yuichi, S.; Mikio, T. Magnetic and structural properties of BiFe1-xMnxO3. J. Magn. Magn. Mater. 2007, 310, 1177–1179. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Mukesh, K.M.; Mahaling, R.N. Mg doping in BiFeO3: An advantage over pure BiFeO3 having enhanced ferroelectric and optical properties for opto-electronic device applications. Ferroelectrics 2017, 520, 184–195. [Google Scholar] [CrossRef]
- de Araujo, C.A.-P.; Cuchiaro, J.D.; McMillan, L.D.; Scott, M.C.; Scott, J.F. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 1995, 374, 627–629. [Google Scholar] [CrossRef]
- Wang, X.; Yan, B.; Dai, Z.; Liu, M.; Liu, H. Enhanced Ferroelectric Properties of Gd-Substitution BiFeO3 Thin Films Prepared by Sol-Gel Process. Ferroelectrics 2010, 410, 96–101. [Google Scholar] [CrossRef]
- Kao, M.C.; Chen, H.Z.; Young, S.L. The microstructure and ferroelectric properties of Sm and Ta-doped Bismuth Titanate Ferroelectric Thin films. Thin Solid Films 2013, 529, 143–146. [Google Scholar] [CrossRef]
- Simmons, J.G. Handbook of Thin Film Technology; Maissel, L.I., Glang, R., Eds.; McGraw-Hill: New York, NY, USA, 1970; Chapter 14; pp. 25, 28. [Google Scholar]
- Hesto, P. Instabilities in Silicon Devices; Barvotlin, G., Vapaille, A., Eds.; North-Holland: Amsterdam, Holland, 1986; Volume 1, p. 263. [Google Scholar]
- Sze, S.M. Physics of Semiconductor Devices; Wiley: New York, NY, USA, 1981; Chapter 7; p. 402. [Google Scholar]
- Jingying, W.; Zhongshuai, L.; Chunrui, M.; Guangliang, H.; Lvkang, S.; Zixiong, S.; Yong, Z.; Lu, L.; Ming, L.; Chun-Lin, J. Flexible lead-free BaTiO3 ferroelectric elementswith high performance.ater. Electron. Device Lett. 2019, 40, 889–892. [Google Scholar] [CrossRef]
- Yang, C.; Han, Y.; Qian, J.; Cheng, Z. Flexible, temperature-stable, and fatigue-endurable PbZr0.52Ti0.48O3 ferroelectric film for nonvolatile memory. Adv. Electron. Mater. 2019, 1900443, 1–8. [Google Scholar] [CrossRef]
- Yang, C.; Han, Y.; Qian, J.; Lv, P.; Lin, X.; Huang, S.; Cheng, Z. Flexible, temperature-resistant, and fatigue-free ferroelectric memory based on Bi(Fe0.93Mn0.05Ti0.02)O3 thin film. Mater. Interfaces 2019, 11, 12647–12655. [Google Scholar] [CrossRef]
Bi1-xMgxFeO3 | 2 Pr (μC/cm2) | 2 Ec (kV/cm) | J (A/cm2) | εr | tan δ |
---|---|---|---|---|---|
X = 0 | 120 | 48 | 5.86 × 10−4 | 22.2 | 0.139 |
X = 0.02 | 124 | 40 | 6.55 × 10−6 | 36.76 | 0.084 |
X = 0.04 | 130 | 39.3 | 8.89 × 10−7 | 37.25 | 0.060 |
X = 0.06 | 140 | 38 | 3.73 × 10−7 | 55.29 | 0.051 |
X = 0.08 | 90 | 24 | 7.69 × 10−5 | 28.23 | 0.223 |
Dielectric Constant (εr) | 55.29 |
---|---|
βs (Jm1/2 V1/2) | 8.16 × 10−24 |
βPF = 2βs | 1.63 × 10−23 |
βexp at the low field region (0–20 kV/cm) | 1.72 × 10−23 |
βexp at the high field region (20–80 kV/cm) | 8.36 × 10−24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, D.-Y.; Chen, H.-Z.; Kao, M.-C.; Zhang, P.-L. Ferroelectric and Electrical Properties Optimization of Mg-doped BiFeO3 Flexible Multiferroic Films. Symmetry 2020, 12, 1173. https://doi.org/10.3390/sym12071173
Lin D-Y, Chen H-Z, Kao M-C, Zhang P-L. Ferroelectric and Electrical Properties Optimization of Mg-doped BiFeO3 Flexible Multiferroic Films. Symmetry. 2020; 12(7):1173. https://doi.org/10.3390/sym12071173
Chicago/Turabian StyleLin, Der-Yuh, Hone-Zern Chen, Ming-Cheng Kao, and Pei-Li Zhang. 2020. "Ferroelectric and Electrical Properties Optimization of Mg-doped BiFeO3 Flexible Multiferroic Films" Symmetry 12, no. 7: 1173. https://doi.org/10.3390/sym12071173