An Improved Near-field Magnetic Probe Radiation Profile Boundaries Assessment for Optimal Radiated Susceptibility Pre-Mapping
Abstract
:1. Introduction
2. Methodology
3. Probe Magnetic Field Characterization in Open-Air Conditions
3.1. Geometry of the Probe
3.2. Modelling of the Near-Field Probe
- The slope of average −6 dB aperture diameter over the scanning distance in the given plane D-6dB(H)
- Variance of the probe aperture over the given frequency range σ−6dB(H)
3.3. Modelling of the Near-Field Probe MF Strength Distribution Map in Open-Air Conditions
4. Modelling of the Near-Field Probe Magnetic Field Strength Distribution in Proximity to the Passive Components
4.1. Characteriztion of the Passive Components in the Proximity of the Near-Field Probe
4.2. Absolute Magnetic Field Distribution Map Modelling
5. Experimental Probe Verification
5.1. Measurement System Setup
5.2. Prescanning and Scanning Results of the Radiated Susceptibility Map
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Abbreviation | Definition |
---|---|
DC | Direct Current |
EM | Electromagnetic |
EMC | Electromagnetic Compatibility |
HF | High Frequency |
IC | Integrated Circuit |
MF | Magnetic Field |
PCB | Printed Circuit Board |
RF | Radio Frequency |
SMD | Surface Mount Device |
VNA | Vector Network Analyzer |
References
- Electromagnetic Compatibility (EMC) International Standard IEC 61000-4-20: “Testing and Measurement Techniques—Emission and Immunity Testing in Transverse Electromagnetic (TEM) Waveguides”, IEC. 2003. Available online: https://webstore.iec.ch/publication/4190 (accessed on 8 June 2020).
- Brahim, S.B.; Bouallegue, R.; David, J.; Vuong, T.H. Study and improvement in the radio communication quality for rotating electrical machine. Electr. Eng. 2019, 101, 855–865. [Google Scholar] [CrossRef]
- Lukočius, R.; Nakutis, Ž.; Daunoras, V.; Deltuva, R.; Kuzas, P.; Račkienė, R. An Analysis of the Systematic Error of a Remote Method for a Wattmeter Adjustment Gain Estimation in Smart Grids. Energies 2018, 12, 37. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Kim, Y.J.; Kim, J.J.; Kim, J.M.; Yang, K.M. Methodology for RF receiver sensitivity analysis using electromagnetic field map. Electron. Lett. 2014, 50, 1753–1755. [Google Scholar]
- Łukasik, Z.; Kuśmińska-Fijałkowska, A.; Kozyra, J.; Putynkowski, G.; Woźny, K. The problem of power supply for station with industrial robot in an automated welding process. Electr. Eng. 2018, 100, 1365–1377. [Google Scholar] [CrossRef]
- Liu, G.; Zhong, S. Research on an Electromagnetic Interference Test Method Based on Fast Fourier Transform and Dot Frequency Scanning for New Energy Vehicles under Dynamic Conditions. Symmetry 2019, 11, 1092. [Google Scholar] [CrossRef] [Green Version]
- Baqar, A.H.; Jiang, T.; Hussain, I.; Farid, G. Probability of Conjunction Estimation for Analyzing the Electromagnetic Environment Based on a Space Object Conjunction Methodology. Symmetry 2018, 10, 255. [Google Scholar] [CrossRef] [Green Version]
- Alves, H.; Carvalho, D.; Pereira, T.; Fernandes, H. Design and instrumentation of a magnetic field micro-probe mapper: An e-lab aparatus to map a coil’s magnetic field. In Proceedings of the 2017 4th Experiment International Conference, Faro, Portugal, 6−8 June 2017; pp. 113–114. [Google Scholar]
- Byun, J.; Lee, H. Analysis and Improvement of Electromagnetic Susceptibility on High Speed LVDS I/O System. Measurement 2010, 175–178. Available online: https://ieeexplore.ieee.org/abstract/document/5728619/citations#citations (accessed on 8 June 2020).
- Merfeldas, A.; Kuzas, P.; Gailius, D.; Andriukaitis, D. Characterization of radiated susceptibility directivity for microstrip and coplanar lines. In Proceedings of the European Microwave Conference in Central Europe EuMCE, Prague, Czech Republic, 13–15 May 2019; pp. 125–128. [Google Scholar]
- Claeys, T.; Vandenbosch, G.A.E.; Pissoort, D. A study of the effects of truncation errors on the compensation of EMI near-field probes. IEEE Int. Symp. Electromagn. Compat. 2016, 11, 23–28. [Google Scholar]
- Merfeldas, A.; Kuzas, P.; Gailius, D.; Nakutis, Z. Magnetic probe for improvement of near-field resolution in radiated susceptibility mapping. Electron. Lett. 2019, 55, 940–942. [Google Scholar] [CrossRef]
- Boyer, A. Improving spatial resolution of immunity maps by post-processing. Asia-Pacific Int. Symp. Electromagn. Compat. 2016, 1, 56–59. [Google Scholar]
- Merfeldas, A.; Kuzas, P.; Gailius, D.; Nakutis, Z.; Knyva, M.; Valinevicius, A.; Andriukaitis, D.; Zilys, M.; Navikas, D. Magnetic Near-field Probe Radiation Profile Boundaries Assessment for Radiated Radio Frequency Susceptibility Mapping. Elektro 2020. to be published. [Google Scholar]
Probe Model Geometry Parameter | Parameter Value |
---|---|
Microstrip line impedance | 50 Ω |
Microstrip PCB dimensions | 100 × 20 mm |
Base laminate thickness | 1.5 mm |
Base laminate Dk | 4.2 |
Distance from probe working edge to the microstrip top layer surface | 5 mm |
Virtual absolute MF probes’ grid density | 1 × 1 mm |
Virtual absolute MF probes’ quantity | 169 |
Virtual absolute MF probes’ coverage area | 13 × 13 mm |
Virtual absolute MF probe grid depth below the surface of the microstrip top layer | 0.1 mm |
Probe RF port excitation power level | 27 dBm |
Resistor Model Parameter | Parameter Value |
---|---|
Base dimensions | 2 × 1.25 × 0.6 mm |
Protective coating thickness | 50 µm |
Resistive layer thickness | 20 µm |
Internal contact material | Ni |
External contact material | Sn |
Resistive layer material | RuO2 |
External electrode grip length | 420 µm |
Internal electrode metallization thickness | 30 µm |
External electrode metallization thickness | 20 µm |
Capacitor Model Parameter | Parameter Value |
---|---|
Base dimensions | 2 × 1.25 × 0.8 mm |
Base material | BaTiO3 X7R |
Internal capacitor plate material | Ni |
Internal contact material | Cu |
Middle contact material | Ni |
External contact material | Sn |
Number of capacitor electrode pairs | 150 |
Capacitor plate metallization thickness | 2 µm |
Distance between capacitor plates | 3 µm |
Percentage of capacitor plates overlap | 95% |
External electrode grip | 530 µm |
Inductor Model Parameter | Parameter Value |
---|---|
Ferrite base dimensions | 1.9 × 1.1 × 0.75 mm |
Ferrite material | NiZn |
Internal electrode material | Ag |
Middle electrode material | Ni |
External electrode material | Sn |
Number of turns | 16 |
Orientation of windings | Horizontal |
Winding loop width | 900 µm |
Winding loop height | 550 µm |
Winding wire thickness | 10 µm |
Winding wire width | 100 µm |
Inter-winding distance | 120 µm |
Diameter of inter-winding vias | 100 µm |
Internal electrode metallization thickness | 10 µm |
Middle electrode metallization thickness | 10 µm |
External electrode metallization thickness | 10 µm |
External electrode grip length | 500 µm |
Type | Max Absolute Differences from Open Air, dB | |||||
---|---|---|---|---|---|---|
80 MHz | 1000 MHz | 3000 MHz | ||||
XY | ZY | XY | ZY | XY | ZY | |
Microstrip line | 7.95 | 11.37 | 5.28 | 11.32 | 13.38 | 14.89 |
Resistor | 8.90 | 13.49 | 5.38 | 10.30 | 2.40 | 11.84 |
Capacitor | 8.65 | 11.46 | 6.81 | 11.25 | 9.86 | 16.58 |
Ferrite bead | 12.22 | 15.92 | 9.15 | 13.65 | 10.46 | 13.71 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merfeldas, A.; Kuzas, P.; Gailius, D.; Nakutis, Z.; Knyva, M.; Valinevicius, A.; Andriukaitis, D.; Zilys, M.; Navikas, D. An Improved Near-field Magnetic Probe Radiation Profile Boundaries Assessment for Optimal Radiated Susceptibility Pre-Mapping. Symmetry 2020, 12, 1063. https://doi.org/10.3390/sym12071063
Merfeldas A, Kuzas P, Gailius D, Nakutis Z, Knyva M, Valinevicius A, Andriukaitis D, Zilys M, Navikas D. An Improved Near-field Magnetic Probe Radiation Profile Boundaries Assessment for Optimal Radiated Susceptibility Pre-Mapping. Symmetry. 2020; 12(7):1063. https://doi.org/10.3390/sym12071063
Chicago/Turabian StyleMerfeldas, Audrius, Pranas Kuzas, Darius Gailius, Zilvinas Nakutis, Mindaugas Knyva, Algimantas Valinevicius, Darius Andriukaitis, Mindaugas Zilys, and Dangirutis Navikas. 2020. "An Improved Near-field Magnetic Probe Radiation Profile Boundaries Assessment for Optimal Radiated Susceptibility Pre-Mapping" Symmetry 12, no. 7: 1063. https://doi.org/10.3390/sym12071063
APA StyleMerfeldas, A., Kuzas, P., Gailius, D., Nakutis, Z., Knyva, M., Valinevicius, A., Andriukaitis, D., Zilys, M., & Navikas, D. (2020). An Improved Near-field Magnetic Probe Radiation Profile Boundaries Assessment for Optimal Radiated Susceptibility Pre-Mapping. Symmetry, 12(7), 1063. https://doi.org/10.3390/sym12071063