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Abstract: Smart energy meters supporting bidirectional data communication enable novel remote
error monitoring applications. This research targets characterization of the systematic worst-case
error of the previously published remote watthour meter’s gain estimation method based on the
comparison of synchronous measurements by the reference and meter under test. To achieve the
research aim a methodology based on global maximization of the systematic error objective function
assuming the typical low voltage electrical distribution network operation parameters ranges as
defined by the standard recommendations for network design. To cross verify the reliability of
the assessed solutions the suggested error analysis methodology was implemented utilizing two
stochastic global extremum search techniques (genetic algorithms, pattern search) and the third one
utilizing nonlinear programming solver. It was determined that the wattmeter adjustment gain
worst-case error does not exceed 0.5% if the remote wattmeter monitored load power factor is larger
than 0.1 and a network is designed according to the recommendation of the acceptable voltage drop
less than 5%. For a load exhibiting power factor larger than cos ϕ “ 0.9 the worst-case error was
found to be less than 0.1%. It is concluded therefore that considering the systematic worst-case error
the previously suggested remote wattmeter adjustment gain estimation method is suitable for remote
error monitoring of Class 2 and Class 1 wattmeters.

Keywords: watthour meter; gain adjustment; systematic error; genetic algorithms; pattern search;
FMINCON; constrained optimization

1. Introduction

The increasing amount of distributed electrical energy generation, smart revenue and
subaccounting meters, interconnected via the advanced measurement infrastructure (bidirectional
data communication channels between meters and data collection modules) are the key features of
the evolving modern smart electrical grids. The demand the metrological reliability of the readings
(trusted metering) of measurement devices cannot be underestimated. Not only it is crucial for
maintaining the correct energy consumption billing (revenue metering) but also provides the electricity
consumer with their energy consumption budget (submetering, home automation, etc.) which on its
way enables changing the energy consumption behavior towards better energy efficiency of buildings,
logistics, manufacturing processes, etc. The revenue metering (Level 2 in Figure 1) is a traditional
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level of measurement infrastructure of monitoring the energy consumption. The last decade is marked
with a significant shift towards replacing the electro-mechanical meters with smart electronic meters
featuring various communication capabilities. Also, the sub-accounting meters, home automation
or industrial meters (Level 3) are becoming more and more popular and affordable, especially in the
context of the IoT framework. Check or sum metering (Level 1) is perhaps the least deployed and
not a mandatory level in monitoring energy flows especially in the low voltage electrical distribution
grids. It is evident from Figure 1 that energy measurement is flowing from the network transformer
towards consumers is measured twice, for example, M1-1 measures the sum of energies measured by
meters M2-1, M2-2 and M2-3, M2-2 measures the sum of energies measured by meters M3-1, M3-2 and
M3-3. This circumstance enables to implement the innovative methods for cross verification of the
smart electricity meters. The proposed method is based on the synchronized power consumption
measurements and their delivery to a smart reference meter for processing according to equations
of the method. For example, in the patent [1], a method for simultaneous verification of all meters
connected down to the sum meter was proposed. Also, in the paper [2] a method of simultaneous
calibration of home automation smart meter’s current channel using the trusted master meter was
discussed. Both methods assume that all loads consuming power are monitored by individual meters.
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Figure 1. Classification of power meters’ installation levels in the smart electrical grid. 
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The meter under inspection (later in the paper called remote wattmeter RemW) and the reference 

meter are installed in the electrical grid in such a way that the reference meter (later in the paper 

called reference wattmeter RefW) is able to measure energy consumption of the part of electrical 

grid including the electrical load monitored by RemW (Figure 2). The data delivery and 

measurement synchronization are mandatory between RefW and RemW, and a reasonably small 

(around 10 W) switchable verification load has to be built into the RemM or connected as an 

external add-on module. 

During the derivation of the RemW adjustment gain, certain assumptions influencing the 

systematic error of the coefficient estimation are made. These assumptions are related to the 

parameters of the electrical grid interconnecting RemW and RefW. The systematic error of the 

estimation was not yet investigated for wide range of electrical distribution networks. Usually, it is 

of interest to explore the worst-case error (WCE) possible in the real world electrical grid for any 

Figure 1. Classification of power meters’ installation levels in the smart electrical grid.

A new method for remote estimation of energy meter’s adjustment factor was proposed in [3].
This method is aimed to determine the multiplicative correction factor for a separate energy meter
using a remote reference energy meter. This method can be applied for verification of the selected
meter despite the presence of any other power consumption occurrences by the same grid loads.
The meter under inspection (later in the paper called remote wattmeter RemW) and the reference
meter are installed in the electrical grid in such a way that the reference meter (later in the paper
called reference wattmeter RefW) is able to measure energy consumption of the part of electrical grid
including the electrical load monitored by RemW (Figure 2). The data delivery and measurement
synchronization are mandatory between RefW and RemW, and a reasonably small (around 10 W)
switchable verification load has to be built into the RemM or connected as an external add-on module.
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During the derivation of the RemW adjustment gain, certain assumptions influencing the
systematic error of the coefficient estimation are made. These assumptions are related to the parameters
of the electrical grid interconnecting RemW and RefW. The systematic error of the estimation was
not yet investigated for wide range of electrical distribution networks. Usually, it is of interest to
explore the worst-case error (WCE) possible in the real world electrical grid for any newly proposed
measurement method. By specifying the WCE despite the electrical grid configuration and load
parameters it is possible to identify the applicability of the method for remote verification of the energy
meters. The real electrical grid is designed according to various recommendations and regulations.
Therefore, the set of parameters characterizing real operating conditions of the network and connected
loads always vary within some bounds. Derivation of analytical expression of the error as a function
of grid and load parameters is a complex task because of various possible grid topologies and load
characteristics including active and reactive components, harmonic distortion, etc. Even though,
it might be possible to derive an analytical expression of the error but searching for the maximum
WCE value and the corresponding set of grid and load parameters might be a challenging nonlinear
constrained optimization task.

The goal of the research presented hereain is to determine the systematic WCE of an
energy meter’s remote adjustment gain estimation procedure according to the method described
in [3]. The other constituent of the total error is a random error, which was already partially
explored in [3,4]. The idea of a remote watthour meter’s online adjustment gain estimation
method [3] is quite new and dependence of its systematic error on circuit parameters is not investigated
yet. Field calibration-based methods [5–7] utilize portable calibrators directly connectable to units
under calibration and the calibration procedure is executed offline, i.e., with a disconnected user loads.
Impedance between calibration unit and portable calibrator is small and is neglected. Specifics of the
investigated remote online adjustment gain estimation method is that some irrefutable impedance
separates a reference unit RefW and unit under adjustment RemW. Furthermore, if an adjustment
gain evaluation procedure is carried out online, the error of the procedure is also a function of the
connected loads’ size and type. There are some contributions to solve similar problems presented
by other researches. G. B. Samson et al. proposed an online auto-calibration technique of system for
energy consumption measurement based on low price but low accuracy Hall effect sensors (HES) [2].
Sensors for monitoring all loads connected to the household grid are installed at outputs of each
breaker. The sensors are calibrated according to measurements of a single high precision current
transformer installed at the main power line. To improve accuracy of the entire HES network a least
mean square algorithm was applied to adjust the gain of each HES sensor in the network. The authors
present comparative analysis of HES sensors network error with and without calibration for particular
loads connected, i.e., three common residential appliances. Results of MATLAB simulation for the case
with a higher number of sensors were also presented but detailed analysis of error dependence on
system load types and magnitudes were omitted. Furthermore, the procedure proposed [2] differs in



Energies 2019, 12, 37 4 of 26

nature from the procedure introduced by authors in [3] and later explored in our work presented in
the publication.

Since an evaluation of all possible combinations of external loads (types, magnitudes and power
factors) in our research is costly to implement using physical models, a numerical simulation was
applied. Whereas a problem is to find an extremum value for the defined bounds of parameters,
the problem could be treated as a multi-parameter optimization task with non–linear constrains and
parameter bounds. The genetic algorithms (GA) are often used to solve this type of optimization
problems, including those coming from electric power system field. The Nonintrusive Load
Monitoring system (NILM) approach based on genetic algorithms [8] can be considered as an example.
The NILM [9–12] method is meant to disaggregate the consumption of the entire active power measured
by standard digital watt-hour meter into its major electrical loads. GAs together with the support
vector machines are the main tools of the proposed framework [13], allowing to detect any abnormal
consumer behavior in the power distribution sector and identify probable power grid frauds. Other
groups of power systems problems to solve using the GA are the energy consumption optimization
tasks [14,15] and optimizations for forecasting purposes [16,17]. The nature of the problem under
consideration is very similar to the optimal power flow [18], optimal automation devices [19] or
distributed generation sources [20] allocation, optimal operating and scheduling of micro grids [21]
and other problems [22,23] but with different objective functions. These are the entire tasks based
on network operation mode calculations with the pre-defined non-linear constraints to find global
extremum, i.e., the minimal losses, the minimal or the maximal flows, the minimal investments, or the
worst-case error for the case under consideration.

The main contribution by authors in this publication is the estimation of WCE of remote gain
adjustment estimation method [3] by means of solving the global nonlinear optimization problem
using three different solvers for cross verification of the results reliability. The objective function for
the error maximization was also composed twofold and each optimization problem separately solved
by three different in nature optimization techniques, namely genetic algorithm, pattern search and
nonlinear optimizer FMINCON. First, the analytical expression of the objective function was derived
and used to find the WCE and electrical grid (wiring losses) and load parameters (active power, power
factor). Second, the objective function was implemented using a Simulink model which was called
by the used optimizers in each iteration step. The second approach is more universal, because any
electrical grid configuration or load models can be applied in the WCE analysis. However, it imposes
much higher requirements upon computational resources compared to analytically expressed objective
function as reported in the comparative analysis contributed by the authors.

This work is structured as follows: Section 2 presents the description of the researched remote
energy meter adjustment gain estimation method and its systematic error analysis; Section 3 presents
the proposed methodology; Section 4 presents the method’s systematic error estimation results
obtained by several methods described in the Section 3.

2. A Method for Remote Estimation of Energy Meter Adjustment Gain

2.1. Method Description and Assumptions

A method for remote wattmeter active power adjustment gain estimation was introduced in [3].
The key assumptions made for the method equations derivation are:

‚ There is a reference meter installed at the input of low voltage distribution grid similarly as shown
in Figure 1 or Figure 2,

‚ It is possible to temporarily (1 s) switch on and off a small active power load (stimulus) at the
location of RemW,

‚ Synchronized active power readings can be acquired by RefW and RemW during stimulus
switching and delivered to RefW via a communication channel,
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‚ Change of power losses and voltage drop due to stimulus state (on or off) are negligible
considering 1% target error of the adjustment gain estimation,

‚ All network loads measured by RefW and RemW are constant during the acquisition of
active powers.

The aim of the method is to determine an estimate k˚p of active power adjustment gain of the
RemW. The definition of the power adjustment gain is:

kp “
P

P˚
, (1)

where P is the actual power and P˚ is the indication of active power by the RemW.
The methodology of the method development is based on some later stated assumptions followed

by the derivation of expression for the adjustment gain. Afterwards, the adequacy of the made
assumptions is verified by estimating systematic error. If the error is found to fall in to the acceptable
range, then it is confirmed that the method is valid in the specified range of electrical network and
load parameters. In this research authors focused on the analysis of the systematic WCE due to the
assumptions made in the derivation of the remote adjustment gain expression.

A network model including wattmeters RefW and RemW, input energy source U1, consumer load
Load 3, network loads Load 1 and Load 2, Wiring between RefW and RemW, and stimulus load PS
are shown in Figure 3. Complex powers of each load and losses are denoted by S, active power by P,
and reactive power by Q.
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estimation procedure.

Active power at the connection point of the reference wattmeter (RefW) could be decomposed to
the sum of network load powers and network wiring loss power for each SW (Figure 3) position:

SW position 1 : Pr1 “ P1p1q ` P2p1q ` P3p1q ` PS ` PWp1q ` ∆PWpPSq, (2)

SW position 2 : Pr2 “ P1p2q ` P2p2q ` P3p2q ` PS ` PWp2q ` ∆PWpPSq, (3)

SW position 3 : Pr3 “ P1p3q ` P2p3q ` P3p3q ` PWp3q ` ∆P2p∆U2q ` ∆P3p∆U2q, (4)

where Pr1, Pr2, Pr3 are powers at the point of RefW corresponding to switch SW position. The active
powers P1, P2, P3 are the powers of the corresponding loads (Load 1, Load 2, Load 3).
In Equations (2)–(3) used notation Pkpmq k is used to indicate load location according to the schematics
in Figure 3, while m is used to indicate position of the switch SW. PW is a grid wiring power loss when
the load PS is disconnected. ∆PWpPSq is the increase of network wiring active power losses due to
connection of the PS:

∆PWpPSq “ PWS ´ PW . (5)
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∆P2p∆U2q, ∆P3p∆U2q, are the differences of corresponding powers caused by the voltage change
U2 due to connection and disconnection of PS:

∆P2p∆U2q “ P2 ´ P2S, (6)

∆P3p∆U2q “ P3 ´ P3S, (7)

where the voltage difference ∆U2 is caused by voltage losses in network wiring due injection of load
power PS.

Powers that should be measured by the RemW for each switch SW position can be expressed:

SW position 1 : Pm1 “ P3p1q, (8)

SW position 2 : Pm2 “ P3p2q ` PS, (9)

SW position 3 : Pm3 “ P3p3q ` ∆P3p∆U2q, (10)

where Pm1, Pm2, Pm3 are the powers at the connection point of RemW for corresponding switch SW
position (Figure 3). Having unadjusted indications of the RemW wattmeter P˚m1, P˚m2, P˚m3 and
considering Equation (1) the following expressions can be written:

P3p1q “ k˚p ¨P
˚
m1, (11)

P3p2q ` PS “ k˚p ¨P
˚
m2, (12)

P3p3q ` ∆P3p∆U2q “ k˚p ¨P
˚
m3. (13)

Substituting Equations (11)–(13) to Equations (2)–(4) it is possible to rewrite:

SW position 1 : Pr1 “ P1p1q ` P2p1q ` k˚p ¨P
˚
m1 ` PS ` PWp1q ` ∆PWp1qpPSq, (14)

SW position 2 : Pr2 “ P1p2q ` P2p2q ` k˚p ¨P
˚
m2 ` PWp2q ` ∆PWp2qpPSq, (15)

SW position 3 : Pr3 “ P1p3q ` P2p3q ` k˚p ¨P
˚
m3 ` PWp3q ` ∆P2p∆U2q. (16)

The main assumption of the method described in [3] is that P1, P2, P3 and PW are constant during
the remote adjustment gain estimation procedure. Therefore, these assumptions are described as:

$

’

’

’

’

’

&

’

’

’

’

’

%

P1p1q “ P1p2q “ P1p3q “ P1,
P2p1q “ P2p2q “ P2p3q “ P2,
P3p1q “ P3p2q “ P3p3q “ P3,

PWp1q “ PWp2q “ PWp3q,
∆PWp1qpPSq “ ∆PWp2qpPSq “ ∆PWpPSq.

(17)

Based on the experimental data collected from typical buildings (office, multi-apartment block,
private house), it was shown in [4] that this assumption is valid with a high probability, for instance,
it is 90% probability that active power consumption is fluctuations are within 1% from its nominal
value during the period of 3 s.

The second assumption of the method [3] is expresed by the approximation:

PS « Pr1 ´ Pr3. (18)

The assumption (18) is equivalent to the following approximations:

∆PWp1qpPSq « 0, ∆PWp2qpPSq « 0 and ∆P2p∆U2q « 0 (19)
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The assumption (19) introduces a systematic error of the adjustement gain estimate k˚p according
to the proposed method. Its impact on the systematic error is analyzed in detail aiming to verify if the
assumption (19) forced errors to exceed the target level. To say in advance, it is shown at the end of the
paper that even with the assumption (19) the adjustment gain estimation systematic errors stay within
the level suitable to remotely monitor errors of Class 1 and Class 2 meters.

According to schematics in Figure 3 and neglecting the influence of RemW internal power losses
the following equality is valid:

Pr1 “ Pr2. (20)

By subtracting both equality sides of (15) from both sides of equality (14) and taking into
consideration (17), (18) and (20) it can be derived:

k˚p “
Pr1 ´ Pr3

P˚m2 ´ P˚m1
. (21)

Power indications of RemW P˚m1 and P˚m2 are related to actual powers Pm1 and Pm2 by gain
coefficient kp:

Pm1 “ kp¨P˚m1, (22)

Pm2 “ kp¨P˚m2. (23)

Because the method of remote adjustment gain estimation relies on the accuracy of RefW, its power
indications P˚r1 and P˚r3 are assumed to be equal to the real (measured) power values, i.e.,:

Pr1 “ P˚r1 (24)

Pr3 “ P˚r3. (25)

To calculate k˚p according to Equation (21) only unadjusted wattmeter indications are available.
Therefore, from substituting (22)–(25) to (21) it can be rewritten:

k˚p “
P˚r1 ´ P˚r3

P˚m2 ´ P˚m1
“ kp¨

Pr1 ´ Pr3

Pm2 ´ Pm1
“ kp¨

∆Pr13

∆Pm21
. (26)

The relative error of the wattmeter adjustment gain is defined by:

δkp “
k˚p ´ kp

kp
. (27)

Substituting Equation (26) to (27) it is possible to reduce the latter to:

δkp “
Pr1 ´ Pr3

Pm2 ´ Pm1
´ 1. (28)

2.2. Analytical Expression of Relative Error

In this section we seek to derive an analytical expression relating δkp to network wiring and
wattmeter load parameters. In [3] it was shown that losses in the internal resistance of a wattmeter
RemW due to the current sensing shunt resistance (a typical value is 0.5 mΩ) are negligible because
the equivalent resistance of Load 3 is many times larger. For example, 10 kW active power load in
230 V AC grid corresponds to around 5 Ω and increases with lower active powers. Regarding the fact
that the internal impedance of a wattmeter could be neglected, the loads Load 2 and Load 3 could
be considered as connected to the same potential point of the circuit. Therefore, both loads could be
replaced by equivalent load:

Sl “ S2 ` S3 “ P2 ` P3 ` jpQ2 `Q3q “ Pl ` jQl . (29)
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The replacement (29) does not influence operation mode of the remaining part of the circuit, i.e.,
it does not influence IW , PW , U2, ∆PWpPSq, ∆U2, Ps, and ∆PWpPSq. Let us denote the sum of Load 2
and Load 3 active powers:

Pl “ P2 ` P3, (30)

and the correspondingly the change of it due to the change of voltage ∆U2 by:

∆Plp∆U2q “ ∆P2p∆U2q ` ∆P3p∆U2q. (31)

The results of numerator and the denominator of (28) are indifferent to the connection point of
the Load 2. Indeed, considering (2), (4), (8), (9), (17), (30), and (31) when the Load 2 is connected in
front of the wattmeter:

Pr1 ´ Pr3 “ PS ` ∆PWpPSq ´ ∆P2p∆U2q ´ ∆P3p∆U2q “ PS ` ∆PWpPSq ´ ∆Plp∆U2q, (32)

Pm2 ´ Pm1 “ P3p2q ` PS ´ P3p1q “ PS, (33)

and when the Load 2 is connected behind of the wattmeter:

Pr1 ´ Pr3 “ PS ` ∆PWpPSq ´ ∆Plp∆U2q, (34)

Pm2 ´ Pm1 “ Plp2q ` PS ´ Plp1q “ PS. (35)

Since the replacement of loads Load 2 and Load 3 with an equivalent load Sl “ S2 ` S3 does not
affect the error expression δkp (28) and Load 1 does not influence any of the component in equations
(32)–(35), the equivalent circuit shown in Figure 4 is later used for the derivation of analytical expression
of δkp. The load Sl is modeled by a serial connection of resistive, inductive and capacitive components,
while wiring impedance is modeled by a serial connection of resistance and inductance.
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Equations (2)–(4) and (8)–(10) for the circuit shown in Figure 4 could be rewritten as:

SW position 1 : Pr1 “ Plp1q ` PS ` PWp1q ` ∆PWpPSq, (36)

SW position 2 : Pr2 “ Plp2q ` PS ` PWp2q ` ∆PWpPSq, (37)

SW position 3 : Pr3 “ Plp3q ` PWp3q ` ∆Plp∆U2q, (38)

SW position 1 : Pm1 “ Plp1q, (39)

SW position 2 : Pm2 “ Plp2q ` PS, (40)

SW position 3 : Pm3 “ Plp3q ` ∆Plp∆U2q. (41)
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By substituting (36), (38), (39), (40), and (17) to (28) the analytical expression for the relative error
δkp can be derived:

δkp “
∆PWpPSq

PS
´

∆Plp∆U2q

PS
. (42)

By denoting:

δkpp∆PWq “
∆PWpPSq

PS
, (43)

δkpp∆Plq “
∆Plp∆U2q

PS
, (44)

Equation (42) can be rewritten:

δkp “ δkpp∆PWq ´ δkpp∆Plq. (45)

Denoting the wiring loss in the case of SW position 1 or 2 (PS is connected) by PWpPSq,
the following expression is written:

∆PWpPSq “ PWpPSq ´ PW . (46)

Then Equation (43) can be rewritten as:

δkpp∆PWq “
PWpPSq ´ PW

PS
. (47)

The admittance of the overall circuit for the switch SW in position 3, could be expressed as:

Y “
1
Z
“

1
b

pRw ` Rlq
2
` pXw ` Xlq

2
. (48)

The admittance of the overall circuit for the switch SW in position 1 or 2 could be expressed as:

YS “
1

ZS
“

1
b

pRw ` RSlq
2
` pXw ` XSlq

2
. (49)

The equivalent conductance of load and switching resistor RS is:

GSl “ Gl ` GS “
Rl

Z2
l
`

1
RS

“
Rl

R2
l ` pXLl ´ XClq

2 `
1

RS
. (50)

The equivalent susceptances of load and switching resistor RS is:

BSl “ Bl ` BS “
XLl ´ XCl

Z2
l

` 0 “
XLl ´ XCl

R2
l ` pXLl ´ XClq

2 . (51)

Recalculating GSl and BSl to series connected resistance and reactance yields:

RSl “
GSl

Y2
Sl
“

GSl

G2
Sl ` B2

Sl
, (52)

XSl “
BSl

Y2
Sl
“

BSl

G2
Sl ` B2

Sl
. (53)

The current through a network wiring in the case of SW position 3 according to Ohms law is:

IW “ U1Y, (54)
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and in the case of SW position 1 or 2 it is:

IWs “ U1YS. (55)

The difference of power losses in wiring with a connected and disconnected RS is:

∆PWpPSq “ I2
WSRW ´ I2

W RW “ U2
1Y2

S RW ´U2
1Y2RW “ U2

1 RW

´

Y2
S ´Y2

¯

. (56)

The second error component in (45) caused by a difference ∆Pl∆U2 “ ∆P∆U2 ` ∆P∆U3 with a
connected and disconnected RS could be expressed by:

δkpp∆Plq “
∆Plp∆U2q

PS
“

Pl ´ PSl
PS

. (57)

Voltage at the input of RemW when SW is at the position 3 (RS is disconnected) could be expressed
using the vector diagram method:

U2 “

b

pU1 ´ IwRW cos ϕ´ IwXW sin ϕq2 ` pIwXW cos ϕ´ IwRW sin ϕq2

“ U1

b

p1´YRW cos ϕ´YXW sin ϕq2 ` pYXW cos ϕ´YRW sin ϕq2.
(58)

Voltage U2S on the consumer side when RS is connected could be expressed as:

U2S “

b

pU1 ´ IWSRW cos ϕS ´ IWSXW sin ϕSq
2
` pIWSXW cos ϕS ´ IWSRW sin ϕSq

2

“ U1

b

p1´YSRW cos ϕS ´YSXW sin ϕSq
2
` pYSXW cos ϕS ´YSRW sin ϕSq

2,
(59)

where ϕ is the phase angle between voltage U1 and current IW :

ϕ “ tan´1
ˆ

XW ` Xl
RW ` Rl

˙

, (60)

and ϕS is a phase angle between voltage U1 and current IWs:

ϕs “ tan´1
ˆ

XW ` XSl
RW ` RSl

˙

. (61)

The power of load without connected PS and disconnected PS are correspondingly:

Pl “ I2
l Rl “ U2

2Y2
l Rl , (62)

Pls “ I2
Sl Rl “ U2

2SY2
l Rl . (63)

Then the difference of consumer power ∆Plp∆U2qwith a connected and disconnected PS can be
expressed as:

∆Plp∆U2q “ Pl ´ PSl “ Y2
l Rl

´

U2
2 ´U2

2S

¯

. (64)

The power difference ∆Plp∆U2q expressed as a function of circuit parameters and voltage U1:

∆Plp∆U2q “ U2
1Y2

l Rlpp1´YRW cos ϕ´YXW sin ϕq2 ` pYXW cos ϕ´YRW sin ϕq2

´p1´YSRW cos ϕS ´YSXW sin ϕSq
2
´ pYSXW cos ϕS ´YSRW sin ϕSq

2
q.

(65)

Power PS consumed by RS in the denominator of the (42)–(44) is:

PS “ U2
2SGS “ U2

1 GSpp1´YSRW cos ϕS ´YSXW sin ϕSq
2
` pYSXW cos ϕS ´YSRW sin ϕSq

2
q. (66)
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Substitution of (56), (65) and (66) to the Equation (42) provides the expression of the error as a
function of circuit parameters:

δkp “
RWpY2

S´Y2q

GSpp1´YS RW cos ϕS´YS XW sin ϕSq
2
`pYS XW cos ϕS´YS RW sin ϕSq

2
q

´
Y2

l Rlpp1´YRW cos ϕ´YXW sin ϕq
2
`pYXW cos ϕ´YRW sin ϕq

2
´p1´YS RW cos ϕS´YS XW sin ϕsq

2
´pYS XW cos ϕS´YS RW sin ϕSq

2
q

GSpp1´YS RW cos ϕS´YS XW sin ϕSq
2
`pYS XW cos ϕS´YS RW sin ϕSq

2
q

.
(67)

The analytical expression (67) can be used to find the worst-case error and the corresponding
combination of network parameters. However, deriving the analytical expression for the maximum
of δkp is difficult due to the group of influencing parameters cos ϕ, cos ϕS, RW , GS, YS, XW , Rl , Yl , Y.
Moreover, it is necessary to describe constraints of network operation mode, restricting parameters like
voltage in every point of the network, current ratings in the wiring, etc. The complexity of the problem
related to the multi-parameter optimization in circuits with multiple operation mode constraints and
parameter bounds yielded to the choice of its solution applying numerical optimization methods.

3. Research Methodology

3.1. Objective Functions, Constraints and Bounds of Independent Parameters

In this research we seek to determine the systematic worst-case error (WCE)
ˇ

ˇδkp
ˇ

ˇ

max of the method
described in [3], considering a low voltage electrical distribution grid design and operation mode
constraints. The value of

ˇ

ˇδkp
ˇ

ˇ

max is important for the judgement about the precision and applicability
of the method, while the parameters of grid and loads corresponding to the WCE are important for
searching the improvement of the method precision. In [3], a wattmeter adjustment gain estimation
uncertainty was preliminary explored by analyzing its random and systematic components. However,
the systematic error was sampled only for some specific combinations of network and load parameters
that were expected to cause the largest errors. In the current publication the search of the WCE is
approached by utilizing global optimization techniques, that are perform extremum (WCE) location
over the whole possible range of independent parameters. Because the method introduced in [3] is
very new, its systematic WCE analysis is still absent.

The objective function used to find WCE of
ˇ

ˇδkp
ˇ

ˇ

max is defined in (68), constraints function in (69)
and parameter bounds in (70):

ˇ

ˇδkp
ˇ

ˇ

max “ max
X

`
ˇ

ˇδkp
`

X
˘
ˇ

ˇ

˘

, (68)

H
`

X
˘

ď 0, (69)

Xmin ď X ď Xmax, (70)

where input vector X “ pRW , Rl , cos ϕq represents electrical parameters (R,L,C) of grid wiring and
loads. Inequality (69) represents nonlinear constraints. In particular, H

`

X
˘

includes maximum rated
current IWmax through the wiring (Figure 4) and the maximum rated consumer power Plmax. Inequality
(70) represents bounds of input parameters. Xmin is the vector representing the minimal possible values
of circuit parameters. Xmax is the vector representing the largest acceptable values of circuit parameters.

The implementation of the optimization procedure is presented by the flowchart in Figure 5.
The procedure of the input vector X initialization is called randomPopulation(p_s) (Figure 5).
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In the following research the objective and constraint functions are implemented either using
derived analytical error expressions (67) or by simulating a Simulink model shown in Figure 6.
The second approach does not require analytical expression of the objective function and any grid
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can be modeled. The advantage of the second approach is that it can be easily adapted to find the
worst-case error for a particular circuit. The drawback on the second approach is that the problem
assigned is challenging in terms of computing requirements. Flow chart of the optimization by using
genetic algorithm for both approaches presented in Figure 5. Both methods use the same logic except
for calculation of the objective and constraint functions. Each time when the objective and constraint
functions are called from the optimization algorithm, the first method calculates values of the objective
and constraint functions applying the derived expressions. The second approach loads Simulink
models, sets up network parameters of the models, solves the models, calculates and returns results
of objective and constraint functions. To compute the result of the objective function, the Simulink
model is solved twice. To reduce the computational load a single model corresponding SW1 and
SW2 switch cases with two power measurement blocks for remote wattmeter powers Pm1 and Pm2

calculation is applied. To compute parameters of the constraint, function the Simulink model is solved
once (SW1 case). Afterwards, the model with a circuit where the load RS is disconnected is called
out (SW3 case). Implementation of the objective and constraint functions utilizing Simulink model
are called objectiveN(P(t), LoadType) and constraintsN(P(t), LoadType). Correspondingly, the objective
and constraint functions implementations utilizing analytical expressions are called objectiveA(P(t),
LoadType) and constraintsA(P(t), LoadType).
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3.2. Digital Optimization Techniques

The optimization problem stated in this paper was never solved before and a priori knowledge
about the objective function local and global extremums is absent. Therefore, to cross verify the
obtained solutions several strongly different optimization techniques should be employed. Also, it is
obvious that the optimization problem is nonlinear, multivariable, and includes nonlinear constraints.
genetic algorithm (GA), pattern search (PS) methods and nonlinear programing solver FMINCON [24]
were selected to conduct the WCE search. Key features and their fit to the solution of the stated
optimization problem are shortly summarized below.

The GA is a stochastic optimization method based on Darwin’s theory of natural selection and
the mechanism of population genetics. It initializes the first population randomly and through a
process of evolution tends to find the most fit individual, i.e., combination of input parameter values
that correspond to the maximum (minimum) value of the objective function. Each new generation
produced by selection, crossover and mutation operators. GA method was successfully applied to solve
nature related problems just for different goals [25]. The GA method is easy adaptable for a particular
problem, does not require prioritization, scale, or weight objectives, and is an attractive alternative to
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other optimization methods because of its robustness in finding global optimum. Since the input values
of the GA are taken recursively, the algorithm operates purposefully and, in many cases, would give
the result faster in comparison to pure random search (PRS) or Monte Carlo simulation where inputs
are chosen in purely random manner. Speed of an algorithm convergence is important for the problem
because calculation of the objective function is time consuming especially for Simulink-based approach.

To verify the obtained solutions, the pattern search (PS) method is used in our research. PS is a
derivative-free algorithm of a class of direct search (DS) methods for solving optimization problems [26].
The algorithm recursively searches a set of points around the current point, so called mesh, to find
closer to optimum (lower/higher) value of objective function in each iteration. The mesh formed in the
previous iteration by adding the current point to a scalar of vectors is called a pattern [26]. If the mesh
improves the objective function of the current point, it becomes the new point, otherwise, the new
mesh is formed, and calculations are repeated. The procedure is iterated until stopping criteria is
met. A stand-alone PS algorithm tends to fall into local minima (maxima) [27]. According to the
method application recommendations [27] to find the global extremum, multiple starting points were
defined and implemented. The points are initiated in a random way from the defined parameter
bounds. Half of the points are initiated for a set of parameters with a higher probability of an optimum
point. Estimation of ranges of the higher optimum point probability are presented further in the
section “Parameter Bounds”. The DS methods as GA were successfully applied for some power system
optimization tasks also [28,29].

Nonlinear programing solver FMINCON based on the interior point algorithm was the third
optimization method implemented for problem solving. FMINCON is a solver used to find the
minimum of the constrained multivariable function [24]. Contrary to the first two methods it is a
gradient-based method that is designed to work on problems where the objective and constraint
functions are both continuous and have continuous first order derivatives [24]. As well as PS,
the FMINCON was utilized to search for the extremum point from set of different starting points.
A fraction of them was chosen from region of higher probability of the optimum point.

Usually optimization solvers are designed to search for an objective function minimum. However,
according to the definition of WCE in Equation (68) it is required to find the maximum of the objective
function. Therefore, the objective function is transformed into the inverse function:

ˇ

ˇδkp
ˇ

ˇ

max “ min
´
ˇ

ˇ

ˇ

`

δkp
`

X
˘˘´1

ˇ

ˇ

ˇ

¯

. (71)

Implementation cost and complexity of GA, PS and FMINCON are not considered in this
publication because MATLAB toolboxes were used in research. Objective and constraints functions
were implemented in MATLAB script language according to Equations (28), (67) and (75) and
related expressions.

3.3. Simulation Settings

3.3.1. Electrical Parameters Calculation

The input parameters of the objective function are: load resistance Rl , wire resistance RW and the
load power factor cos ϕ. Since the inductive and capacitive loads have the opposite signs of reactance,
there is an infinite amount of possible combinations of inductance Ll and capacitance Cl that meet
particular load power factor cos ϕ for the fixed Rl value. Therefore, submission of the load inductance
Ll and capacitance Cl to objective function as input parameters are fated to poor convergence of the
solution. Therefore, the power factor cos ϕ was chosen as an input parameter to define the reactive load.
While the linear loads could be RL or RC type, separate GA searches were established for both cases



Energies 2019, 12, 37 15 of 26

allowing just RL type load for one case and just RC for another. Parameters Ll and Cl are calculated
inside of the objective function from the resistance Rl and cos ϕ according to the following formulas:

#

Ll “
Rl tanparccospcos ϕqq

ω ,
Cl “ 1010 F; i. e. , XCl « 0 Ω.

(72)

#

Cl “
1

Rlω tanparccospcos ϕqq
,

Ll “ 10´10 H; i. e. , XLl « 0 Ω.
(73)

where ω “ 2π f is angular frequency. Expressions (72) were used for the case of RL type load,
while expressions (73) for the case of RC type load. Inductance of the wiring cable LW is calculated
inside of the objective function according to expression:

LW “ Rl¨
LW1m
RW1m

, (74)

where RW1m is a resistance of 1 meter cable length, LW1m is 1 meter inductance of the same cable.
Expressions (72)–(74) were used to calculate load and wiring electrical parameters in the

optimization algorithm explained in Figure 5.

3.3.2. Nonlinear Inequality Constraints

The used nonlinear inequality constraints denoted H
`

X
˘

in Equation (69) are:

H
`

X
˘

“

#

h1
`

X
˘

h2
`

X
˘

+

“

#

h1
`

RW, Rl , cos ϕ
˘

“ IWs ´ IWmax ď 0,
h2
`

RW,Rl , cos ϕ
˘

“ Pls ´ Plmax ď 0.
(75)

Load resistance Rl , wire resistance RW and load power factor cos ϕ are the input parameters of the
constraint function (75) as well as for the objective function. Parameters Ll , Cl and LW are calculated by
applying formulas (72)–(74). When the analytical expression of the objective function is used, the value
IWs is calculated by applying the Equation (55). Calculation of value Pls is defined in Equation (63).
When Simulink model (Figure 6) is used, the IWs and Pls “ Pm2 are estimated by solving the circuit
presented in Figure 4.

The current IWmax is set according to the calculated value for a particular defined maximum rated
load power Plmax nominal voltage UN and power factor cos ϕN :

IWmax “
Plmax

UN cos ϕN
, (76)

where Plmax is the maximal consumer active power for a particular case under consideration. A typical
power factor for residential load cos ϕN “ 0.9 is used in this case. The nominal voltage UN “ 230 V.

3.3.3. Parameter Bounds

Parameter bounds in (70) Xmin ˜ Xmax are vectors of a circuit and operation mode parameters
defining a range of values for independent input parameters:

$

’

&

’

%

RWmin ď RW ď RWmax,
Rlmin ď Rl ď Rlmax,
cos ϕmin ď cos ϕ ď 1.

(77)

The upper bound of a network wiring active resistance RWmax is calculated according to the
standard limits of allowable voltage drop in low voltage network. In many countries voltage drop
in low voltage distribution network cannot exceed 5% [30]. Since for the fundamental frequency
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XW ! RW , the inductance of the cable could be neglected. To calculate upper bound of the wire
resistance, the simplified expression is used:

RWmax “
5%¨UN

IWmax¨100%
. (78)

The lower bound of wire active resistance is accepted to be:

RWmin “ RWmax{100. (79)

Bounds for Rl were chosen in connection to nominal network voltage and the maximum rated
power measured by the RemW:

Rlmax “
U2

N
Plmin

, (80)

Rlmin “
U2

N
Plmax

cos2 ϕmin, (81)

where Plmin “ 1 W in all of the following simulations (corresponds to Rlmax “ 52, 900 Ω), and Plmax is
specified along with the presented results in the next chapter, for example Plmax “ 10 kW with power
factor cos ϕmin “ 0.1, corresponds to Rlmin “ 0.0529 Ω.

The upper power factor bound of cos ϕ in Equation (77) corresponds to pure active load (cos ϕ “ 1).
The lower bound for the power factor cos ϕmin is in the range from 0.1 to 0.9 and is dependent on the
simulation settings specified in the next section.

3.3.4. Initial Points Selection

To improve a convergence to a solution, some fraction of initial population (for GA) or a fraction
of initial points (for PS, FMINCON) were forced to meet the parameter ranges with higher probability
of the optimum point. To determine the parameter range, the objective function was calculated by
changing one parameter by fixed step for a wide range while the rest of the parameters were kept
constant. The results are presented in Figures 7–9.
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According to the results, bounds for a half of initial population defined as follows:
$

’

&

’

%

RWmax{2 ď RW ď RWmax,
Rlmin ď Rl ď 50 Ω,

cos ϕmin ď cos ϕ ď 1.
(82)

All members of the initial population (for GA case) or initial points (for PS, FMINCON cases)
were initialized randomly. During the initialization half of the initial population (for GA) or initial
points (for PS, FMINCON) were forced to meet the bounds defined by Equations (77)–(81). The second
half of the initial population (initial points) was forced to meet the bounds defined in Equation (82).

4. Results and Discussion

4.1. The Network Parameters Corresponding to the Worst-Case Error

Following the aim of the research to identify the WCE and the corresponding network and
load parameters, a combination of typical loads, wire resistances, and power factor values were
used to search for

ˇ

ˇδkp
ˇ

ˇ

max according to Equations (68)–(70). Though the input vector in (70) is
X “ pRW , Rl , cos ϕq, the most often measured parameters by the metering instruments are load power
Pl and power factor cos ϕ. Also, a distribution network design recommendation include restrictions
on power losses and transferred power ratio. The results presented in this chapter are aimed to reveal
ˇ

ˇδkp
ˇ

ˇ

max dependence on Pl , cos ϕ and Pw{Pl . The complete set of the obtained results are shown in
Tables 1 and 2, while some of dependencies are plotted graphically in Figures 10–13.
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Table 1. Results obtained by GA and PS methods for R, RL, RC type loads.

Pmax = 2.5 (kW), IWmax = 12.08 (A), RWmax = 0.952 (Ω)

Method Load Type cos(ϕ)min cosϕ‹ R‹
l (Ω) R‹

W (Ω) I‹
WS (A) P‹

WS (W) P‹
WS/P‹

l (%) U‹
2S (V) ∆U‹ (%) P‹

l (W) Q‹
l (Var) |δkP|max (%)

GA R 1 1 52900 0.95 0.05 0.002 0.2 229.9 0.02 1 0 0.019
PS R 1 1 52900 0.95 0.05 0.002 0.2 229.9 0.02 1 0 0.019

FMINCON R 1 1 52889 0.95 0.05 0.002 0.2 229.9 0.02 1 0 0.019

GA RL 0.9 0.9 16.4 0.95 12.1 138.9 5.8 219.5 4.6 2379 1152 0.0715
GA RC 0.9 0.9 16.4 0.95 12.1 138.8 5.8 219.5 4.6 2377 1152 0.0811
PS RL 0.9 0.9 16.4 0.95 12.1 138.9 5.8 219.5 4.6 2378 1152 0.0715

FMINCON RL 0.9 0.9 16.4 0.95 12.1 138.9 5.8 219.5 4.6 2378 1152 0.0715

GA RL 0.7 0.7 12.9 0.95 12.1 138.9 7.4 221.7 3.6 1869 1907 0.2293
GA RC 0.7 0.7 12.9 0.95 12.1 138.7 7.4 221.7 3.6 1868 1906 0.2416
PS RL 0.7 0.7 12.9 0.95 12.1 138.9 7.4 221.7 3.6 1869 1907 0.2293

FMINCON RL 0.7 0.7 12.9 0.95 12.1 138.9 7.4 221.7 3.6 1869 1907 0.2293

GA RL 0.5 0.5 9.3 0.95 12.1 138.9 10.3 223.9 2.7 1350 2337 0.35
GA RC 0.5 0.5 9.3 0.95 12.1 138.6 10.3 223.9 2.7 1348 2335 0.3606
PS RL 0.5 0.5 9.3 0.95 12.1 138.9 10.3 223.9 2.7 1349 2337 0.35

FMINCON RL 0.5 0.5 9.3 0.95 12.1 138.9 10.3 223.9 2.7 1349 2337 0.35

GA RL 0.3 0.3 5.6 0.95 12.1 138.9 17.0 226.1 1.7 818 2602 0.432
GA RC 0.3 0.3 5.6 0.95 12.1 138.6 17.0 226.1 1.7 817 2599 0.439
PS RL 0.3 0.3 5.6 0.95 12.1 138.9 17.0 226.1 1.7 818 2602 0.4319

FMINCON RL 0.3 0.3 5.6 0.95 12.1 138.9 17.0 226.1 1.7 818 2602 0.4319

GA RL 0.1 0.10 1.9 0.95 12.1 138.9 50.0 228.4 0.7 278 2743 0.4747
GA RC 0.1 0.1 1.9 0.95 12.1 138.6 50.3 228.4 0.7 275 2740 0.477
PS RL 0.1 0.12 2.3 0.95 12.1 138.9 40.9 228.1 0.8 340 2733 0.4717

FMINCON RL 0.1 0.1 1.9 0.95 12.1 138.9 50.4 228.4 0.7 276 2743 0.4747
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Table 2. The adjustment gain relative error dependence on the maximum rated load power 5 kW, 7 kW, and 10 kW.

cos(ϕ)min cosϕ‹ R‹
l (Ω) R‹

W (Ω) I‹
WS (A) P‹

WS (W) P‹
WS/P‹

l (%) U‹
2S (V) ∆U‹ (%) P‹

l (W) Q‹
l (Var) |δkP|max (%)

Pmax = 5 pkWq, IWmax = 24.2 pAq, RWmax = 0.48pΩq

1 1 52900 0.95 0.05 0.0009 0.1 229.98 0.01 1 0 0.0095
0.9 0.9 8.2 0.48 24.2 277.8 5.8 219.5 4.6 4765 2308 0.081
0.7 0.7 6.4 0.48 24.2 277.8 8.1 221.7 3.6 3438 3508 0.24
0.5 0.5 4.6 0.48 24.2 277.8 10.3 223.9 2.7 2702 4680 0.36
0.3 0.3 2.8 0.48 24.2 277.8 17.0 226.1 1.7 1638 5208 0.44
0.1 0.1 1.0 0.48 24.2 277.8 50.1 228.4 0.7 554 5488 0.48

Pmax = 7 pkWq, IWmax = 33.8 pAq, RWmax = 0.34 pΩq

1 1 52900 0.34 0.05 0.0009 0.09 229.98 0.007 1 0 0.0068
0.9 0.9 5.9 0.34 33.8 388.9 5.8 219.5 4.6 6674 3232 0.084
0.7 0.7 4.6 0.34 33.8 388.9 7.4 221.7 3.6 5243 5349 0.24
0.5 0.5 3.3 0.34 33.8 388.9 10.3 223.9 2.7 3783 6553 0.36
0.3 0.3 2 0.34 33.8 388.9 17.0 226.1 1.7 2293 7292 0.44
0.1 0.1 0.7 0.34 33.8 388.9 50.4 228.4 0.7 772 7684 0.49

Pmax = 10 pkWq, IWmax = 48.3 pAq, RWmax = 0.24 pΩq

1 1 52900 0.24 0.05 0.0006 0.06 229.99 0.005 1 0 0.0048
0.9 0.9 4.1 0.24 48.3 555 5.8 219.5 4.6 9537 4619 0.086
0.7 0.7 3.2 0.24 48.3 555 7.4 221.7 3.6 7493 7644 0.24
0.5 0.5 2.3 0.24 48.3 555 10.3 223.9 2.7 5406 9363 0.36
0.3 0.3 1.4 0.24 48.3 555 17.0 226.2 1.7 3276 10419 0.45
0.1 0.1 0.5 0.24 48.3 555 50.3 228.4 0.7 1104 10978 0.49
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Figure 11. Dependence of the wattmeter gain WCE on power factor in the range of a load power factor
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Simulation results in the case of the maximum load power Pmax “ 2.5 pkWq and pure active load
(R), active-inductive (RL) and active-capacitive (RC) type load are presented in Table 1. The set of
selected parameters is considered as typical for the case when the reference meter is a revenue meter
and the meter under adjustment is a sub-accounting meter like a smart socket in a residential apartment.

The differences of the error obtained by different in their nature search methods GA, PS and
FMINCON are marginal. The differences of the error in cases of RL type and RC type load are also
minor with a trend for RC type loads to produce slightly higher error values. The practical meaning of
the differences is negligible, therefore only results of the error estimations for the more common RL
type loads are presented further.

It is the value of WCE |δkP|max is the most important parameter characterizing remote adjustment
gain estimation method accuracy. The same goal attained by three different search methods
ensures that the global maximum was found. The possibility that there might exist yet another
vector of independent variables yielding the same maximum error can only be important for
understanding the worst case network configuration but does not affect the characterization of the
remote estimation method.

To visualize the influence of the wiring resistance on the adjustment gain error, the GA search was
completed for the upper bounds RWmax1 “ 0.75 RWmax, RWmax2 “ 0.5 RWmax and RWmax3 “ 0.25 RWmax
in addition to RWmax “ 0.952 Ω. The obtained results are plotted in Figure 10.

The results of presented research indicate that the WCE values were found for the highest wire
impedance values RW “ RWmax. The trend of the increasing error with each increment of the wiring
impedance supports the assumption that the source of the error is the wiring impedance between
RefW and RemW. The assumption could be made by analyzing the Equations (36), (42), (43) and
(67). Zero wiring impedance (RW “ 0 Ω and XW “ 0 Ω) results in zero values of both ∆PWpPSq and
∆Plp∆U2q, and according to the equation (67), consequently to δkp “ 0. On the other hand, it could
be a future research direction to estimate wiring losses on-line and look for the modification of the
adjustment gain estimation method by including information about the wiring resistance or losses and
expecting to reduce its WCE.

According to Table 1, the WCE in case of the active load cospϕqmin “ 1 corresponds to the
smallest load (the upper bound of R‹l ), but WCE corresponds to the largest load (the lower bound of
R‹l ) when cospϕqmin ‰ 1. To investigate the haziness a more detail exploration of WCE dependency
on power factor is conducted in a range of load power factor 0.9 ě cospϕqmin ě1 and plotted in
Figure 11. The explanation to the form of the dependence in Figure 11 can be given by analyzing
Equations (42)–(45). The results presented in Figure 11 show that by incrementing the minimal bound
of power factor leads to reduction of the error modulus, while δkPmax value always remains negative.
In this range the error component related to the load power change δkpp∆Plq dominates over the error
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component related to change of wiring losses δkpp∆PWq (43). By reaching some threshold power factor
cospϕqminTHR, the sign of δkPmax turns positive. In the range cospϕqmin ą cospϕqminTHR, the WCE is
found corresponding to lowest load (Rl “ Rlmax) and δkpp∆PWq dominates over δkpp∆Plq. Despite
this discontinuity of the dependence δkpmax

`

cospϕqmin
˘

, the modulus of δkPmax as it can be seen from
Table 1 and Figure 10, is always decreasing in response to increase of the load power factor cospϕqmin.

The simulation results corresponding to Pmax “ 5, 7 and 10 kW are presented in Table 2. It can
be seen from Table 2 that the load power factor reduction always degrades the error |δkP|max despite
the largest allowed load power Pmax. The comparison of the results in Tables 1 and 2 reveals that
the error values are similar for the same load power factor in the whole explored the minimal
power factor range (0.1 ě cospϕqmin ě 0.9). It could be explained by the fact that the product
IWmax¨RWmax “ ∆Umax “ 0.05∆UN is constant. Cable impedance must be less, while the maximal
current is relatively higher for higher powers to meet the requirement of the largest allowable voltage
drop (5%). Equal or lower than the allowable impedance of the wires must be assured by selecting
proper diameter of wires during the electrical distribution grid design stage. The results also show that
the increase of RWmax gives the same impact on results as proportional relative increase of IWmax for the
power factor bounds resulting in negative error values. Summarizing up the results, it can be clearly
stated that the WCE is obtained from combination of the highest wiring impedance (RWmax, LWmax),
the highest allowable current IWmax, and the lowest load power factor cospϕq ď cospϕqmin values.

To visualize the dependence of the error modulus on load value Pl , which is calculated according
to Equation (62), the direct error value calculations are carried out using Equation (67) and Figure 12 is
plotted. Figure 12 indicates that a real error |δkP| in case of a particular Pl can be significantly less than
|δkP|max which corresponds to the maximum considered load. The real error value could be estimated
by measuring Pl and cospϕq and utilizing expression approximated from data shown in Figure 12.
However, since |δkP|max is less that the target accuracy of 1%, in the current stage of the development,
we did not attempt to derive the precise error estimation but only focused on its upper limit |δkP|max.

In Figure 13 there are presented WCE and load power factor dependencies on power loss to
load power ratio P‹W{P

‹
l . Power loss to load power ratio is often accepted as selection criteria for

power distribution grid cables. It can be seen that decreasing the power factor of a load herewith
also increasing loss to load power ratio, causes the increase of the wattmeter gain estimation error.
This dependence is nonlinear and if P‹W

P‹l
p%q ă 5% the error value is much below the 1% target. Even in

the case of abnormal level of power losses in the network (Figure 4) wires, the method yields wattmeter
adjustment gain estimation error less than 0.5%.

4.2. Requirements upon Computational Resources

The aim of this section is to compare the computational cost of all applied global search algorithms
combined with the methods of objective function implementation. The analytical derivation of the
expression of WCE is based on the mentioned approximations. In opposite, the Simulink model based
objective function does not include any approximate assumptions. Therefore, it is of important to
estimate if using the analytical expression is reasonable in a sense of speeding up calculations. For the
case of analytically expressed objective function optimization it is of interest to discover which of
algorithm (GA, PS, FMINCON) perform faster in finding the same solution. The objective function
is unique because it is derived from new method equations introduced in [3]. Therefore, it was not
solved by someone else and computational cost reported in the analysis below cannot be compared
over data of any other references.

The obtained wattmeter adjustment gain WCE values along with calculation times and population
size of GA or number of initial points of PS are presented in Table 3. All computations were performed
on Dell PowerEdge R730 server with two Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40 GHz processors,
together containing 12 physical cores and 24 logical cores with 32 GB operating memory. The power
management profile of the computer operational system was set to performance level during the
simulations. The computations were implemented and performed using MATLAB Parallel computing
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toolbox. The comparative speed analysis was carried out for a load power factor within the range
0.9 ě cos ϕ ě 1.

Table 3. Comparative analysis of the applied search methods.

Search Method |δkp|max(%) Population Size (GA) or Number
of Initial Points (PS) Computation Time (s)

GA applying
analytical expressions 0.07148 20,000 227.3

PS applying
analytical expressions 0.07146 200 66.1

FMINCON applying
analytical expressions 0.07146 40 22.73

GA applying
Simulink model 0.07137 200 13,494.3

The GA search based on objective and constraint functions implemented applying analytical
expressions yielded the result much faster in comparison to Simulink based implementation of objective
and constraints functions despite for the 100 times larger search population size. The higher population
size caused slightly higher extremum value with much higher probability of the result being a global
minimum. PS implementation applying analytical expressions gave a very close result in noticeably
lower time in comparison to the same implementation of the GA method. FMINCON based search
implementation of analytical expressions has shown a noticeable speed advantage in comparison to
the rest methods and gave very close result as can be seen from Table 3. Therefore, the results in Table 3
support the statement, that using analytical expression does not lead to the loss of search precision but
significantly reduce computational cost. Also, FMINCON seems to obtain the same solution of the
optimization problem (66) several times faster than GA and PS methods.

5. Conclusions

The systematic worst-case error (WCE) of a previously introduced wattmeter adjustment gain
remote estimation method was studied using the simplified electrical energy delivery model enabling
to derive an analytical expression of the error (objective function) and constraint functions. To find the
WCE, the error expression was maximized using two stochastic search techniques (genetic algorithm,
pattern search) and the nonlinear programming solver. The adequacy of the error analytical expression
and its maximization solution was verified by the second approach based on numerical simulation
of electrical circuit model. Both solutions obtained produced very close results with practically
insignificant differences. The second approach utilizing numerical electrical circuit model universal in
a sense that it enables to find the WCE together with the corresponding electrical network configuration
without analytical expression of the objective function. However, the requirements for computational
cost is many times higher for the second approach. For the considered network model the computation
time required to reach the solution was over 200 times longer to the search of WCE using the derived
analytical expression. Therefore, it we the second approach is recommended for the verification of the
correctness of problem solution, but analytical expression is reasonable for

The research has revealed that the systematic error of the method is influenced by the wattmeter
monitored load active power, its power factor and losses in the network wiring between reference
and wattmeter under test. It was found that the WCE is below 0.5% if the load power factor is larger
than 0.1. The WCE is less than 0.1% for a load exhibiting power factor larger than 0.9 in a distribution
network designed following the recommendations to ensure the grid voltage magnitude drop not
more than 5%. The WCE of the proposed method is a conservative characterization of error range.
Therefore, the systematic error of the described remote adjustment gain estimation method does not
exceed error limits of Class 2 and Class 1 watthour revenue meters.
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Nomenclature

Abbreviations
GA genetic algorithms
PS pattern search
DS direct search
FMINCON function for nonlinear constrained optimization [24]
WCE worst-case error
RefW reference wattmeter
RemW remote wattmeter
HES Hall effect sensors
SW switch
SW1 switch in position 1
SW2 switch in position 2
SW3 switch in position 3
Variables
kp power adjustment gain
kp* estimate of power adjustment gain
δkp relative error of the wattmeter adjustment gain
P active power (W)
P* the indication of active power by the wattmeter under gain adjustment RemW (W)
∆P active power loss (W)
∆PWpPSq active power loss change due to adjustment load PS connection (W)
∆Pjp∆Ukq active power of the ith load change due to the kth voltage change (W)
Q reactive power (Var)
S complex power (VA)
U voltage (V)
∆U voltage difference (V)
I current (A)
Y admittance (S)
Z impedance (Ω)
R resistance (Ω)
X reactance (Ω)
G conductance (S)
B susceptance (S)
L inductance (H)
C capacitance (F)
cos ϕ load power factor
X vector of input parameters
H vector of constraints quantities
h1 wiring current constraint
h2 active load constraint
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Subscripts and Superscripts
r reference wattmeter
m remote wattmeter
W wiring parameter

S
network regime with a gain adjustment load connected or parameter/quantity of the
corresponding network

l load parameter
L inductive
C capacitive
max maximum
min minimum
N nominal
* indication/estimate containing an error
‹ parameter/quantity corresponding to the maximum error case
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