Solution of Non-Autonomous Schrödinger Equation for Quantized de Sitter Klein-Gordon Oscillator Modes Undergoing Attraction-Repulsion Transition
Abstract
:1. Introduction
2. Canonical Field Quantization and Unstable Modes
2.1. Classical Klein-Gordon Field in an Accelerating Space-Time
2.2. Reduction of Time-Frozen Hamiltonian by Bogoliubov Transformation
2.3. Non-Autonomous Quantum Evolution: Solution with Finitely Many Extrema
2.3.1. Transforming to an Autonomous Schrödinger Equation
2.3.2. Harmonic Oscillator Initially in Ground State
2.3.3. Superposition of Harmonic Oscillator Ground State and First Excited State
3. Discussion
3.1. Cosmological Implications
3.2. Existence of Preferred Physical Representation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
FLRW | Friedmann Lemaitre Robertson Walker |
PDE | partial differential equation |
Appendix A. Separation of Variables
Appendix B. Choice of Boundary Conditions
References
- Aldrovandi, R. Nonrelativistic spacetimes with cosmological constant. Class. Quantum Grav. 1999, 16, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Balbi, A. Constraints on cosmological parameters from MAXIMA-1. Astrophys. J. 2000, 545, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- De Bernardis, P. A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 2000, 404, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Peacock, J.A.; Cole, S.; Norberg, P.; Baugh, C.M.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.D.; Colless, M.; Collins, C.; Couch, W.; et al. (Hubble Space Telescope Project Consortium). A measurement of the cosmological mass density from clustering in the 2dF. Galaxy Redshift Survey. Nature 2001, 410, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. (Supernova Cosmology Project Consortium). Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–587. [Google Scholar] [CrossRef]
- Riess, A.G.; Strolger, L.G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Challis, P.; Filippenko, A.V.; Jha, S.; Li, W.; et al. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 2004, 607, 665–688. [Google Scholar] [CrossRef] [Green Version]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. (WMAP Team). First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Supp. 2003, 148, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Tegmark, M.; Strauss, M.A.; Blanton, M.R.; Abazajian, K.; Dodelson, S.; Sandvik, H.; Wang, X.; Weinberg, D.H.; Zehavi, I.; Bahcall, N.A.; et al. (WMAP team). Cosmological parameters from SDSS and WMAP. Phys. Rev. D. 2004, 69, 103501-1–103501-26. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.M. Spacetime and Geometry: An Introduction to General Relativity; Benjamin Cummings: San Francisco, CA, USA, 2003. [Google Scholar]
- Carroll, S.M.; Chatwin-Davies, M. Cosmic equilibration: A holographic no-hair theorem from the generalized second law. Phys. Rev. D 2017, 97, 046012. [Google Scholar] [CrossRef] [Green Version]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Esposito, G.; Kamenshchik, A.Y.; Pollifrone, G. Euclidean Quantum Gravity on Manifolds with Boundary; Kluwer/Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Pauli, W. Relativistic field theory of elementary particles. Rev. Mod. Phys. 1941, 13, 203–232. [Google Scholar] [CrossRef]
- Thouless, D.J. The Quantum Mechanics of Many-Body Systems, 2nd. ed.; Dover Publications: New York, NY, USA, 1992. [Google Scholar]
- Broadbridge, P. Normal forms for classical and Boson systems. Phys. A 1979, 99, 494–512. [Google Scholar] [CrossRef]
- Schroer, B. Quantization of m2 < 0 field equations. Phys. Rev. D 1971, 3, 1764–1770. [Google Scholar]
- Mijic, M. Particle production and classical condensates in de Sitter space. Phys. Rev. D 1998, 57, 2138–2146. [Google Scholar] [CrossRef] [Green Version]
- Broadbridge, P.; Zulkowski, P. Dark Energy States from Quantization of Boson Fields in a Universe with Unstable Modes. Rep. Math. Phys. 2006, 57, 27–40. [Google Scholar] [CrossRef]
- Broadbridge, P.; Hurst, C.A. Existence of a complex Structure for Quadratic Hamiltonians? Ann. Phys. 1981, 131, 104–117. [Google Scholar] [CrossRef]
- Paneitz, S.M. Unitarization of symplectics and stability for causal differential equations in Hilbert space. J. Funct. Anal. 1981, 41, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Broadbridge, P. Problems in the quantization of quadratic Hamiltonians. Hadron. J. 1981, 4, 899–948. [Google Scholar]
- Broadbridge, P. Existence Theorems for Segal Quantization via Spectral Theory in Krein Space. J. Austral. Math. Soc. B 1983, 24, 439–460. [Google Scholar] [CrossRef] [Green Version]
- Chaiken, J.M. Number operators for representations of the canonical commutation relations. Commun. Math. Phys. 1968, 8, 164–184. [Google Scholar] [CrossRef]
- Allen, B. Vacuum states in de Sitter space. Phys. Rev. D 1985, 32, 3136–3149. [Google Scholar] [CrossRef] [Green Version]
- Allen, B.; Folacci, A. Massless minimally coupled scalar field in de Sitter space. Phys. Rev. D 1987, 35, 3771–3778. [Google Scholar] [CrossRef] [Green Version]
- Kirsten, K.; Garriga, J. Massless minimally coupled fields in de Sitter space: O(4)-symmetric states versus de Sitter-invariant vacuum. Phys. Rev. D 1993, 48, 567–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polarski, D. Infrared divergences in de Sitter space. Phys. Rev. D 1991, 43, 1892–1895. [Google Scholar] [CrossRef] [PubMed]
- Bunch, T.S.; Davies, P.C.W. Quantum field theory in de Sitter space—Renormalization by point-splitting. Proc. Roy. Soc. A. 1978, 360, 117–134. [Google Scholar]
- Guth, A.H. Inflation. Proc. Natl. Acad. Sci. USA 1993, 90, 4871–4877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. 1980, 91B, 99–102. [Google Scholar] [CrossRef]
- Kazanas, D. Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J. 1980, 241, L59–L63. [Google Scholar] [CrossRef]
- Taylor Redd, N. How Big is the Universe? Available online: https://www.space.com/24073-how-big-is-the-universe.html (accessed on 10 June 2017).
- Adam, R.; Ade, P.A.; Aghanim, N.; Akrami, Y.; Alves, M.I.R.; Argüeso, F.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; et al. (The Planck Collaboration). Planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 2016, 594, A16. [Google Scholar]
- Segal, I.E. Mathematical Problems of Relativistic Physics; American Mathematical Soc.: Providence, RI, USA, 1963. [Google Scholar]
- Harigaya, K.; Ibe, M.; Kawasaki, M.; Yanagida, T.T. Revisiting the minimal chaotic inflation model. Phys. Lett. B 2016, 756, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Antosiewicz, H.A. Bessel Functions of Fractional Order. In Handbook of Mathematical Functions; Abramowicz, M., Stegun, I.A., Eds.; National Bureau of Standards: Washington, DC, USA, 1964; pp. 435–478. [Google Scholar]
- Liu, H.; Zou, J. Zeros of the Bessel and spherical Bessel functions and their applications for uniqueness in inverse acoustic obstacle scattering. IMA J. Appl. Math. 2007, 72, 817–831. [Google Scholar] [CrossRef] [Green Version]
- Messiah, A. Quantum Mechanics; North-Holland: Amsterdam, The Netherlands, 1961; Volume 1, Chapter 9. [Google Scholar]
- Fulling, S.A. Aspects of Quantum Field Theory in Curved Space-Time; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Mukhanov, V.F.; Winitski, S. Introduction to Quantum Effects in Gravity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Luke, Y.L. Integrals of Bessel Functions. In Handbook of Mathematical Functions; Abramowicz, M., Stegun, I.A., Eds.; National Bureau of Standards: Washington, DC, USA, 1964; p. 485. [Google Scholar]
- Aiello, A. Field theory of monochromatic optical beams. 1. Classical fields. J. Opt. 2019, 22, 014001. [Google Scholar] [CrossRef] [Green Version]
- Bluman, G.W.; Kumei, S. Symmetry-based algorithms to relate partial differential equations. 1. Local symmetries. Euro. J. Appl. Math. 1990, 1, 189–216. [Google Scholar] [CrossRef] [Green Version]
- Ryden, B. Introduction to Cosmology; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1984, 14, 870–892. [Google Scholar] [CrossRef] [Green Version]
- Van Hove, L. Les difficultés de divergences pour un modele particulier de champ quantifié. Physica 1952, 18, 145–159. [Google Scholar] [CrossRef]
- Isidro, J.M.; Fernández de Córdoba, P. On the Holographic Bound in Newtonian Cosmology. Entropy 2018, 20, 83. [Google Scholar] [CrossRef] [Green Version]
- Fock, V. Konfigurationsraum und zweite Quantelung. Z. Phys. 1932, 75, 622–647. [Google Scholar] [CrossRef]
- Cook, J. The mathematics of second quantization. Trans. Am. Math. Soc. 1953, 74, 222–245. [Google Scholar] [CrossRef]
- Stone, M.H. On one-parameter unitary groups in Hilbert Space. Ann. Math. 1932, 33, 643–648. [Google Scholar] [CrossRef]
- Von Neumann, J. Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 1931, 104, 570–578. [Google Scholar] [CrossRef]
- Schrödinger, E. Expanding Universes; Cambridge University Press: Cambridge, UK, 1956. [Google Scholar]
- Hari Dass, N.D.; Desiraju, H. Killing vectors of FLRW metric (in comoving coordinates) and zero modes of the scalar Laplacian. arXiv, 2016; arXiv:1511.07142v3. [Google Scholar]
- Collaboration, P.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. (The Planck Collaboration). Planck 2018 results. I. Overview, and the cosmological legacy of Planck. arXiv, 2018; arXiv:180706205P. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broadbridge, P.; Deutscher, K. Solution of Non-Autonomous Schrödinger Equation for Quantized de Sitter Klein-Gordon Oscillator Modes Undergoing Attraction-Repulsion Transition. Symmetry 2020, 12, 943. https://doi.org/10.3390/sym12060943
Broadbridge P, Deutscher K. Solution of Non-Autonomous Schrödinger Equation for Quantized de Sitter Klein-Gordon Oscillator Modes Undergoing Attraction-Repulsion Transition. Symmetry. 2020; 12(6):943. https://doi.org/10.3390/sym12060943
Chicago/Turabian StyleBroadbridge, Philip, and Kathryn Deutscher. 2020. "Solution of Non-Autonomous Schrödinger Equation for Quantized de Sitter Klein-Gordon Oscillator Modes Undergoing Attraction-Repulsion Transition" Symmetry 12, no. 6: 943. https://doi.org/10.3390/sym12060943