New Uniform Motion and Fermi–Walker Derivative of Normal Magnetic Biharmonic Particles in Heisenberg Space
Abstract
:1. Introduction
2. The Heisenberg Group and Magnetic Particles
3. Uniform Motion for Normal Biharmonic Magnetic Particles
3.1. Uniformly Accelerated Motion (UAM)
3.2. Unchanged Direction Motion (UDM)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fuente, D.; Romero, A. Uniformly accelerated motion in General Relativity: Completeness of inextensible trajectories. Gen. Relativ. Gravit. 2015, 47, 33. [Google Scholar] [CrossRef]
- Cabrerizo, M.B.J.L.; Fernandez, M.; Romero, A. Magnetic vortex filament flows. J. Math. Phys. 2007, 48, 082904. [Google Scholar]
- Comtet, A. On the Landau levels on the hyperbolic plane. Ann. Phys. 1987, 173, 185. [Google Scholar] [CrossRef]
- Druta-Romaniuc, S.L.; Munteanu, M.I. Magnetic curves corresponding to Killing magnetic fields in E 3. J. Math. Phys. 2011, 52, 1. [Google Scholar] [CrossRef] [Green Version]
- Druta-Romaniuc, S.L.; Munteanu, M.I. Killing magnetic curves in a Minkowski 3-space. Nonlinear Anal. Real Word Appl. 2013, 14, 383. [Google Scholar] [CrossRef]
- Körpınar, T.; Demirkol, R.C.; Asil, V. The motion of a relativistic charged particle in a homogeneous electromagnetic field in De-Sitter space. Rev. Mex. Fis. 2018, 64, 176–180. [Google Scholar]
- Körpınar, T.; Demirkol, R.C. Energy on a timelike particle in dynamical and electrodynamical force fields in De-Sitter space. Rev. Mex. Fis. 2017, 63, 560–568. [Google Scholar]
- Koenderink, J.J. Solid Shape; MIT Press: Cambridge, UK, 1990. [Google Scholar]
- Izumiya, S.; Nagai, T. Geeralized Sabba Curves i the Euclidea n-Sphere ad Spherical Duality. Results Math. 2017, 72, 401–417. [Google Scholar] [CrossRef]
- Asil, V.; Körpınar, T.; Baş, S. Inextensible ows of timelike curves with Sabban frame in S21. Siauliai Math. Semin. 2012, 7, 5–12. [Google Scholar]
- Calvaruso, G.; Munteanu, I. Hopf magnetic curves in the anti-de Sitter space H31. J. Nonlinear Math. Phys. 2018, 25, 462–484. [Google Scholar] [CrossRef]
- Wood, C.M. On the energy of a unit vector field. Geom. Dedicata 1997, 64, 319–330. [Google Scholar] [CrossRef]
- Guven, J.; Valencia, D.M.; Vazquez-Montejo, J. Environmental bias and elastic curves on surfaces. Phys. A Math. Theory 2014, 47, 355201. [Google Scholar] [CrossRef] [Green Version]
- Rindler, W. Length contraction paradox. Am. J. Phys. 1961, 24, 365. [Google Scholar] [CrossRef]
- Rindler, W. Hyperbolic motion in curved space time. Phys. Rev. 1961, 119, 2082. [Google Scholar] [CrossRef]
- Friedman, Y.; Scarr, T. Making the relativistic dynamics equation covariant: Explicit solutions for motion under a constant force. Phys. Scr. 2012, 86, 065008. [Google Scholar] [CrossRef] [Green Version]
- Friedman, Y.; Scarr, T. Uniform acceleration in general relativity. Gen. Relativ. Gravit. 2015, 47, 121. [Google Scholar] [CrossRef] [Green Version]
- Fuente, D.; Romero, A.; Torres, P.J. Unchanged direction motion in general relativity: The problems of prescribing acceleration and the extensibility of trajectories. J. Math. Phys. 2015, 56, 112501. [Google Scholar] [CrossRef]
- Fuente, D.; Romero, A.; Torres, P.J. Uniform circular motion in general relativity: Existence and extendibility of the trajectories. Class. Quantum Gravity 2017, 34, 125016. [Google Scholar] [CrossRef]
- Sachs, R.K.; Wu, H. General Relativity for Mathematicians; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1977. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Körpinar, T.; Körpinar, Z.; Chu, Y.-M.; Akinlar, M.A.; Inc, M. New Uniform Motion and Fermi–Walker Derivative of Normal Magnetic Biharmonic Particles in Heisenberg Space. Symmetry 2020, 12, 1017. https://doi.org/10.3390/sym12061017
Körpinar T, Körpinar Z, Chu Y-M, Akinlar MA, Inc M. New Uniform Motion and Fermi–Walker Derivative of Normal Magnetic Biharmonic Particles in Heisenberg Space. Symmetry. 2020; 12(6):1017. https://doi.org/10.3390/sym12061017
Chicago/Turabian StyleKörpinar, Talat, Zeliha Körpinar, Yu-Ming Chu, Mehmet Ali Akinlar, and Mustafa Inc. 2020. "New Uniform Motion and Fermi–Walker Derivative of Normal Magnetic Biharmonic Particles in Heisenberg Space" Symmetry 12, no. 6: 1017. https://doi.org/10.3390/sym12061017
APA StyleKörpinar, T., Körpinar, Z., Chu, Y. -M., Akinlar, M. A., & Inc, M. (2020). New Uniform Motion and Fermi–Walker Derivative of Normal Magnetic Biharmonic Particles in Heisenberg Space. Symmetry, 12(6), 1017. https://doi.org/10.3390/sym12061017