Herglotz’s Variational Problem for Non-Conservative System with Delayed Arguments under Lagrangian Framework and Its Noether’s Theorem
Abstract
:1. Introduction
2. HGVP for Non-Conservative Dynamics with Delayed Arguments
3. Non-Isochronous Variation of Hamilton–Herglotz Action with Delayed Arguments
4. Herglotz Type Noether’s Theorem for Non-Conservative Systems with Delayed Arguments
5. Birkhoff Generalization of Herglotz Type Noether’s Theorem
6. Hamilton Generalization of Herglotz Type Noether’s Theorem
7. Examples
8. Conclusions
Funding
Conflicts of Interest
References
- Hu, H.Y.; Wang, Z.H. Review on nonlinear dynamic systems involving time delays. Adv. Mech. 1999, 29, 501–512. [Google Scholar]
- Xu, J.; Pei, L.J. Advances in dynamics for delayed systems. Adv. Mech. 2006, 36, 17–30. [Google Scholar]
- Wang, Z.H.; Hu, H.Y. Stability and bifurcation of delayed dynamic systems: From theory to application. Adv. Mech. 2013, 43, 3–20. [Google Scholar]
- Zhang, S.; Xu, J. Review on nonlinear dynamics in systems with coupling delays. Chin. J. Theor. Appl. Mech. 2017, 49, 565–587. [Google Scholar]
- El’sgol’c, L.E. Qualitative Methods in Mathematical Analysis; American Mathematical Society: Providence, RI, USA, 1964. [Google Scholar]
- Hughes, D.K. Variational and optimal control problems with delayed argument. J. Optim. Theory Appl. 1968, 2, 1–14. [Google Scholar] [CrossRef]
- Frederico, G.S.F.; Torres, D.F.M. Noether’s symmetry theorem for variational and optimal control problems with time delay. Numer. Algebra Control Optim. 2012, 2, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jin, S.X. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Phys. Sin. 2013, 62, 234502. [Google Scholar]
- Frederico, G.S.F.; Odzijewicz, T.; Torres, D.F.M. Noether’s theorem for nonsmooth extremals of variational problems with time delay. Appl. Anal. 2014, 93, 153–170. [Google Scholar] [CrossRef]
- Jin, S.X.; Zhang, Y. Noether theorem for non-conservative Lagrange systems with time delay based on fractional model. Nonlinear Dyn. 2015, 79, 1169–1183. [Google Scholar] [CrossRef]
- Jin, S.X.; Zhang, Y. Noether symmetry and conserved quantity for Hamilton system with time delay. Chin. Phys. B 2014, 23, 054501. [Google Scholar] [CrossRef]
- Jin, S.X.; Zhang, Y. Noether theorem for nonholonomic systems with time delay. Math. Probl. Eng. 2015, 2015, 539276. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dyn. 2014, 77, 73–86. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay. Commun. Nonlinear Sci. Numer. Simul. 2016, 36, 81–97. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Noether theorem for non-conservative systems with time delay on time scales. Commun. Nonlinear Sci. Numer. Simul. 2017, 52, 32–43. [Google Scholar] [CrossRef]
- Zhai, X.H.; Zhang, Y. Conservation laws for a delayed Hamiltonian system in a time scales version. Symmetry 2018, 10, 668. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.P.S.; Martins, N.; Torres, D.F.M. Variational problems of Herglotz type with time delay: DuBois-Reymond condition and Noether’s first theorem. Discrete Cont. Dyn. Syst. 2015, 35, 4593–4610. [Google Scholar] [CrossRef]
- Santos, S.P.S.; Martins, N.; Torres, D.F.M. Higher-order variational problems of Herglotz type with time delay. Pure Appl. Funct. Anal. 2016, 1, 291–307. [Google Scholar]
- Santos, S.P.S.; Martins, N.; Torres, D.F.M. Noether currents for higher-order variational problems of Herglotz type with time delay. Discrete Cont. Dyn. Syst. Ser. S 2018, 11, 91–102. [Google Scholar] [CrossRef]
- Herglotz, G. Beruhrüngstransformationen; The University of Göttingen: Göttingen, Germany, 1930. [Google Scholar]
- Herglotz, G. Gesammelte Schriften; Vandenhoeck and Ruprecht: Göttingen, Germany, 1979. [Google Scholar]
- Guenther, R.B.; Gottsch, J.A.; Guenther, C.M. The Herglotz Lectures on Contact Transformations and Hamiltonian Systems; Juliusz Center for Nonlinear Studies: Torun, Poland, 1996.
- Georgieva, B.; Guenther, R. First, Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 2002, 20, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Donchev, V. Variational symmetries, conserved quantities and identities for several equations of mathematical physics. J. Math. Phys. 2014, 55, 032901. [Google Scholar] [CrossRef]
- Almeida, R.; Malinowska, A.B. Fractional variational principle of Herglotz. Discrete Cont. Dyn. Syst. Ser. A 2017, 19, 2367–2381. [Google Scholar] [CrossRef]
- Garra, R.; Taverna, G.S.; Torres, D.F.M. Fractional Herglotz variational principles with generalized Caputo derivatives. Chaos Soliton. Fract. 2017, 102, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Tavares, D.; Almeida, R.; Torres, D.F.M. Fractional Herglotz variational problems of variable order. Discrete Cont. Dyn. Syst. Ser. S 2018, 11, 143–154. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Konjik, S.; Pilipović, S. Variational problems of Herglotz type with complex order fractional derivatives and less regular Lagrangian. Acta Mech. 2019, 230, 4357–4365. [Google Scholar] [CrossRef]
- Zhang, J.K.; Yin, L.Y.; Zhou, C. Fractional Herglotz variational problems with Atangana-Baleanu fractional derivatives. J. Inequal. Appl. 2018, 2018, 44. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Noether symmetry and conserved quantity for a time-delayed Hamiltonian system of Herglotz type. R. Soc. Open Sci. 2018, 5, 180208. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Zhang, Y. Noether’s theorem for fractional Herglotz variational principle in phase space. Chaos Soliton. Fract. 2019, 119, 50–54. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y. Noether symmetry and conserved quantity for Hamiltonian system of Herglotz type on time scales. Acta Mech. 2018, 229, 3601–3611. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, X. Conservation laws of nonconservative nonholonomic system based on Herglotz variational problem. Phys. Lett. A 2019, 383, 691–696. [Google Scholar] [CrossRef]
- Zhang, Y. Variational problem of Herglotz type for Birkhoffian system and its Noether’s theorem. Acta Mech. 2017, 228, 1481–1492. [Google Scholar] [CrossRef]
- Zhang, Y. Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type. Int. J. Non-Linear Mech. 2018, 101, 36–43. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y. Noether symmetry and conserved quantities of fractional Birkhoffian system in terms of Herglotz variational problem. Commun. Theor. Phys. 2018, 70, 280–288. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, X. Conservation laws for Birkhoffian systems of Herglotz type. Chin. Phys. B 2018, 27, 090502. [Google Scholar] [CrossRef]
- Machado, L.; Abrunheiro, L.; Martins, N. Variational and optimal control approaches for the second-order Herglotz problem on spheres. J. Optimiz. Theory Appl. 2018, 182, 965–983. [Google Scholar] [CrossRef] [Green Version]
- Lazo, M.J.; Paiva, J.; Amaral, J.T.S.; Frederico, G.S.F. An action principle for action-dependent Lagrangians: Toward an action principle to nonconservative systems. J. Math. Phys. 2018, 59, 032902. [Google Scholar] [CrossRef] [Green Version]
- Lazo, M.J.; Paiva, J.; Frederico, G.S.F. Noether theorem for action-dependent Lagrangian functions: Conservation laws for non-conservative systems. Nonlinear Dyn. 2019, 97, 1125–1136. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.X.; Zhang, Y. A new type of adiabatic invariants for disturbed Birkhoffian system of Herglotz type. Chin. J. Phys. 2020, 64, 278–286. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y. Adiabatic invariants of Herglotz type for perturbed nonconservative Lagrangian systems. Theor. Math. Phys. 2020, 202, 126–135. [Google Scholar] [CrossRef]
- Mei, F.X. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems; Science Press: Beijing, China, 1999. [Google Scholar]
- Zhang, Y. Recent advances on Herglotz’s generalized variational principle of nonconservative dynamics. Trans. Nanjing Univ. Aero. Astro. 2020, 37, 13–26. [Google Scholar]
- Arraut, I. The quantum Yang-Baxter conditions: The fundamental relations behind the Nambu-Goldstone theorem. Symmetry 2019, 11, 803. [Google Scholar] [CrossRef] [Green Version]
- Brauner, T. Spontaneous symmetry breaking and Nambu-Goldstone bosons in Quantum Many-Body systems. Symmetry 2010, 2, 609–657. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y. Herglotz’s Variational Problem for Non-Conservative System with Delayed Arguments under Lagrangian Framework and Its Noether’s Theorem. Symmetry 2020, 12, 845. https://doi.org/10.3390/sym12050845
Zhang Y. Herglotz’s Variational Problem for Non-Conservative System with Delayed Arguments under Lagrangian Framework and Its Noether’s Theorem. Symmetry. 2020; 12(5):845. https://doi.org/10.3390/sym12050845
Chicago/Turabian StyleZhang, Yi. 2020. "Herglotz’s Variational Problem for Non-Conservative System with Delayed Arguments under Lagrangian Framework and Its Noether’s Theorem" Symmetry 12, no. 5: 845. https://doi.org/10.3390/sym12050845