# Conditional Lie–Bäcklund Symmetries and Functionally Generalized Separation of Variables to Quasi-Linear Diffusion Equations with Source

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Conditional Lie-Bäcklund Symmetry (6) of Equation (7)

**Definition**

**1.**

**Definition**

**2.**

**Proposition**

**1**

**.**Equation (8) admits the CLBS (9) if there exists a function $W(t,x,v,\eta )$ such that

- Case 1. ${a}_{1}\left(x\right)=0$.

- Case 2. ${a}_{1}\left(x\right)\ne 0$.

## 3. Exact Solutions of Equation (7)

**Example**

**1.**

**(i)**For $k\ne -1,$

**(ii)**For $k=-1,$

**Example**

**2.**

**Example**

**3.**

**(i)**For $qs>0,$

**(ii)**For $qs<0,$

**(iii)**For $q=0,$

**Example**

**4.**

**(i)**For $s=4,$

**(ii)**For $s\ne 4,$

**Example**

**5.**

**Example**

**6.**

**(i)**For $s>0$,

**(ii)**For $s<0$,

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Tikhonov, A.N.; Samarskii, A.A. Equations of Mathematical Physics; Nauka: Moscow, Russian, 1972. [Google Scholar]
- Vladimirov, V.S.; Zharinov, V.V. Equations of Mathematical Physics; Fizmatlit: Moscow, Russian, 2000. [Google Scholar]
- Zwillinger, D. Handbook of Differential Equations; Academic: San Diego, CA, USA, 1998. [Google Scholar]
- Polyanin, A.D.; Zaitsev, V.F.; Moussiaux, A. Handbook of First Order Partial Differential Equations; Taylor and Fransis: London, UK, 2002. [Google Scholar]
- Ibragimov, N.H. CRC Handbook of Lie Group to Differential Equations; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Polyanin, A.D.; Vyaz’min, A.V.; Zhurov, A.I.; Kazemin, D.A. Handbook of Exact solutions to Heat- and Mass-Transfer Equations; Faktorial: Moscow, Russian, 1998. [Google Scholar]
- Doyle, P.W.; Vassiliou, P.J. Separation of variables for the 1-dimensional nonlinear diffusion equation. Int. J. Nonl. Mech.
**1998**, 33, 315–326. [Google Scholar] [CrossRef] - Galaktionov, V.A. On new exact blow-up solutions for nonlinear heat equations with source and applications. Diff. Int. Eq.
**1990**, 3, 863–874. [Google Scholar] - Galaktionov, V.A.; Posashkov, S.A. New exact solutions to parabolic equations with quadratic nonlinearities. USSR Comput. Math. Math. Phys.
**1989**, 29, 112–119. [Google Scholar] [CrossRef] - Galaktionov, V.A.; Svirshchevski, S. Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics; Chapman and Hall: London, UK, 2007. [Google Scholar]
- Cherniha, R. New non-Lie ansätze and exact solutions of nonlinear reaction-diffusion-convection equations. J. Phys. A Math. Gen.
**1998**, 31, 8179–8198. [Google Scholar] [CrossRef] - Samarskii, A.A.; Galaktionov, V.A.; Kurdyumov, S.P.; Mikhailov, A.P. Blow-Up in Quasilinear Parabolic Equations; Walter de Gruyter Co.: Berlin, Germany, 1995. [Google Scholar]
- King, J.R. Exact polynomial solutions to some nonliner diffusion equations. Phys. D
**1993**, 64, 35–65. [Google Scholar] [CrossRef] - Qu, C.Z.; Zhang, S.L.; Liu, R.C. Separation of variables and exaxt solutions to quasilinear diffusion equations with nonlinear source. Phys. D
**2000**, 144, 97–123. [Google Scholar] [CrossRef] - Hill, J.M.; Avagliano, A.J.; Edwards, M.P. Some exact results for nonlinear diffusion with absorption. IMA J. Appl. Math.
**1992**, 48, 283–304. [Google Scholar] [CrossRef] - Clarkson, P.A.; Mansfield, E.L. symmetry reductions and exact solutions of a class of nonlinear heat equations. Phys. D
**1993**, 70, 250–288. [Google Scholar] [CrossRef][Green Version] - Arrigo, D.J.; Hill, J.M. Nonclassical symmetries for nonlinear diffusion and absorption. Stud. Appl. Math.
**1995**, 94, 21–39. [Google Scholar] [CrossRef] - Zhdanov, R.Z. Conditional Lie–Bäcklund symmetry and reduction of evolution equation. J. Phys. A
**1995**, 28, 3841–3850. [Google Scholar] [CrossRef][Green Version] - Fokas, A.S.; Liu, Q.M. Nonlinear interaction of traveling waves of nonintegrable equations. Phys. Rev. Lett.
**1994**, 72, 3293–3296. [Google Scholar] [CrossRef] - Qu, C.Z. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Stud. Appl. Math.
**1997**, 99, 107–136. [Google Scholar] [CrossRef] - Qu, C.Z. Exact solutions to nonlinear diffusion equations obtained by generalized conditional symmetry. IMA J. Appl. Math.
**1999**, 62, 283–302. [Google Scholar] - Bluman, G.W.; Reid, J.D.; Kumei, S. New classes of symmetries for partial differential equations. J. Math. Phys.
**1998**, 29, 806–812. [Google Scholar] [CrossRef] - Newell, A.C.; Tabor, M.; Zeng, Y.B. A unified approach to Painlevé expansions. Phys. D
**1987**, 29, 1–68. [Google Scholar] [CrossRef] - Kaptsov, O.V.; Verevkin, I.V. Differential constraints and exact solutions of nonlinear diffusion equations. J. Phys. A Math. Gen.
**2003**, 36, 1401–1414. [Google Scholar] [CrossRef][Green Version] - Galaktionov, V.A.; Posashkov, S.A. New explicit solutions of quasi-linear heat equations with general first-order sign-invariants. Phys. D
**1996**, 99, 217–236. [Google Scholar] [CrossRef] - Galaktionov, V.A. Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proc. R. Soc. Edinb.
**1995**, 125, 225–246. [Google Scholar] [CrossRef] - King, J.R. Exact similarity solutions to some nonlinear diffusion equations. J. Phys. A Math. Gen.
**1990**, 23, 3681–3697. [Google Scholar] [CrossRef] - Burgan, J.R.; Munier, A.; Feix, M.R.; Fijalkow, E. Homology and the nonlinear heat diffusion equation. SIAM J. Appl. Math.
**1984**, 44, 11–18. [Google Scholar] [CrossRef] - Hood, S. On direct, implicit reductions of a nonlinear diffusion equation with an arbitrary function- generalizations of Clarkson’s and Kruskal’s method. IMA J. Appl. Math.
**2000**, 64, 223–244. [Google Scholar] [CrossRef] - Kannan, R.; Zhang, Z.J. A study of viscous flux formulations for a p-multigrid spectral volume Navier Stokes solver. J. Sci. Comp.
**2009**, 41, 165–199. [Google Scholar] [CrossRef] - Cherniha, R.; Serov, M.; Pliukhin, O. Nonlinear Reaction-Diffusion-Convection Equations: Lie and Conditional Symmetry, Exact Solutions and Their Applications; Chapman and Hall/CRC Press: New York, NY, USA, 2018. [Google Scholar]
- Bertsch, M.; Kersner, R.; Peletier, L.A. Positivity versus localization in degenerate diffusion equations. Nonl. Anal. TMA
**1985**, 9, 987–1008. [Google Scholar] [CrossRef] - Svirshchevskii, S.R. Nonlinear differential operator of first and second order possessing invarinant linear spaces of maximal dimension. Theor. Math. Phys.
**1995**, 105, 1346–1353. [Google Scholar] [CrossRef] - Ji, L.N.; Qu, C.Z. Conditional Lie–Bäcklund symmetries and invariant subspaces to nonlinear diffusion equations with convection and source. Stud. Appl. Math.
**2013**, 131, 266–301. [Google Scholar] [CrossRef] - Kersner, R. Some properties of generalized solutions of quasilinear degenerate parabolic equations. Acta Math. Acad. Sci. Hungar.
**1978**, 32, 301–330. [Google Scholar] - Cherniha, R.; Pliukhin, O. New conditional symmetries and exact solutions of reaction-diffusion-convection equations with exponential nonlinearities. J. Math. Anal. Appl.
**2013**, 403, 23–37. [Google Scholar] [CrossRef]

No. | Equation (7) | CLBS (6) |
---|---|---|

1 | ${u}_{t}={\left(\right)}_{{u}^{-\frac{1}{2}}}x$ | $\sigma ={\left(\right)}_{{u}^{\frac{1}{2}}}xx$ |

2 | ${u}_{t}={\left(\right)}_{{u}^{\frac{1}{k}}}x$ | $\sigma ={\left(\right)}_{{u}^{\frac{1}{k}}}xx$ |

3 | ${u}_{t}={\left(\right)}_{exp}x$ | $\sigma ={\left(\right)}_{exp}xx$ |

4 | ${u}_{t}={\left(\right)}_{{u}^{-\frac{4}{3}}}x$ | $\sigma ={\left(\right)}_{{u}^{-\frac{2}{3}}}xx$ |

5 | ${u}_{t}={\left(\right)}_{{u}^{\frac{1}{k}}}x$ | $\sigma ={\left(\right)}_{{u}^{\frac{1}{k}}}xx{\left(\right)}_{{u}^{\frac{1}{k}}}x$ |

$\sigma ={\left(\right)}_{{u}^{\frac{1}{k}}}xx{\left(\right)}_{{u}^{\frac{1}{k}}}x$ | ||

$\sigma ={\left(\right)}_{{u}^{\frac{1}{k}}}xx{\left(\right)}_{{u}^{\frac{1}{k}}}x$ | ||

$\sigma ={\left(\right)}_{{u}^{\frac{1}{k}}}xx{\left(\right)}_{{u}^{\frac{1}{k}}}x$ | ||

6 | ${u}_{t}={\left(\right)}_{exp}x$ | $\sigma ={\left(\right)}_{exp}xx{\left(\right)}_{exp}x$ |

$\sigma ={\left(\right)}_{exp}xx{\left(\right)}_{exp}x$ | ||

$\sigma ={\left(\right)}_{exp}xx{\left(\right)}_{exp}x$ | ||

$\sigma ={\left(\right)}_{exp}xx{\left(\right)}_{exp}x$ | ||

7 | ${u}_{t}={\left(\right)}_{{u}^{-\frac{4}{3}}}x$ | $\sigma ={\left(\right)}_{{u}^{-\frac{2}{3}}}xx{\left(\right)}_{{u}^{-\frac{2}{3}}}x$ |

$\sigma ={\left(\right)}_{{u}^{-\frac{2}{3}}}xx{\left(\right)}_{{u}^{-\frac{2}{3}}}x$ | ||

$\sigma ={\left(\right)}_{{u}^{-\frac{2}{3}}}xx{\left(\right)}_{{u}^{-\frac{2}{3}}}x$ | ||

$\sigma ={\left(\right)}_{{u}^{-\frac{2}{3}}}xx{\left(\right)}_{{u}^{-\frac{2}{3}}}x$ | ||

8 | ${u}_{t}={\left(\right)}_{{u}^{-\frac{4}{3}}}x$ | $\sigma ={\left(\right)}_{{u}^{-\frac{2}{3}}}xx+\frac{2}{{x}^{2}}{u}^{-\frac{2}{3}}$ |

$\sigma ={\left(\right)}_{{u}^{-\frac{4}{3}}}xx+\frac{12}{{x}^{2}}{u}^{-\frac{4}{3}}$ | ||

9 | ${u}_{t}={\left(\right)}_{{u}^{\frac{s}{2-s}}}x$ | $\sigma ={\left(\right)}_{{u}^{\frac{s}{2-s}}}xx+\frac{s}{{x}^{2}}{u}^{\frac{s}{2-s}}$ |

10 | ${u}_{t}={\left(\right)}_{exp}x$ | $\sigma ={\left(\right)}_{exp}xx+\frac{2}{{x}^{2}}exp\left(u\right)$ |

11 | ${u}_{t}={\left({u}^{-\frac{4}{3}}{u}_{x}\right)}_{x}-\frac{3}{4}q{u}^{\frac{7}{3}}$ | $\sigma ={\left({u}^{-\frac{4}{3}}\right)}_{xxx}-\frac{3}{x}{\left({u}^{-\frac{4}{3}}\right)}_{xx}+\frac{3}{{x}^{2}}{\left({u}^{-\frac{4}{3}}\right)}_{x}$ |

12 | ${u}_{t}={\left({u}^{-\frac{4}{3}}{u}_{x}\right)}_{x}$ | $\sigma ={\left({u}^{-\frac{4}{3}}\right)}_{xxx}-\frac{6}{x}{\left({u}^{-\frac{4}{3}}\right)}_{xx}+\frac{18}{{x}^{2}}{\left({u}^{-\frac{4}{3}}\right)}_{x}-\frac{24}{{x}^{3}}{u}^{-\frac{4}{3}}$ |

13 | ${u}_{t}={\left({u}^{-\frac{4}{3}}{u}_{x}\right)}_{x}-\frac{3}{4}s{u}^{-\frac{1}{3}}-\frac{3}{4}q{u}^{\frac{7}{3}}$ | $\begin{array}{ll}\sigma =& {\left({u}^{-\frac{4}{3}}\right)}_{xxx}+3\sqrt{s}tan\left(\right)open="("\; close=")">\sqrt{s}x& {\left({u}^{-\frac{4}{3}}\right)}_{xx}\end{array}$ |

$\begin{array}{ll}\sigma =& {\left({u}^{-\frac{4}{3}}\right)}_{xxx}-3\sqrt{s}cot\left(\right)open="("\; close=")">\sqrt{s}x& {\left({u}^{-\frac{4}{3}}\right)}_{xx}\end{array}$ | ||

$\begin{array}{ll}\sigma =& {\left({u}^{-\frac{4}{3}}\right)}_{xxx}-3\sqrt{-s}tanh\left(\right)open="("\; close=")">\sqrt{-s}x& {\left({u}^{-\frac{4}{3}}\right)}_{xx}\end{array}$ | ||

$\begin{array}{ll}\sigma =& {\left({u}^{-\frac{4}{3}}\right)}_{xxx}-3\sqrt{-s}coth\left(\right)open="("\; close=")">\sqrt{-s}x& {\left({u}^{-\frac{4}{3}}\right)}_{xx}\end{array}$ |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, R.; Ji, L.
Conditional Lie–Bäcklund Symmetries and Functionally Generalized Separation of Variables to Quasi-Linear Diffusion Equations with Source. *Symmetry* **2020**, *12*, 844.
https://doi.org/10.3390/sym12050844

**AMA Style**

Wang R, Ji L.
Conditional Lie–Bäcklund Symmetries and Functionally Generalized Separation of Variables to Quasi-Linear Diffusion Equations with Source. *Symmetry*. 2020; 12(5):844.
https://doi.org/10.3390/sym12050844

**Chicago/Turabian Style**

Wang, Rui, and Lina Ji.
2020. "Conditional Lie–Bäcklund Symmetries and Functionally Generalized Separation of Variables to Quasi-Linear Diffusion Equations with Source" *Symmetry* 12, no. 5: 844.
https://doi.org/10.3390/sym12050844