Photo-Tunable Azobenzene-Anthraquinone Schiff Base Copper Complexes as Mediators for Laccase in Biofuel Cell Cathode
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Procedure
2.2. Preparations
- 1: Yield 48%. IR 1598 cm−1 s (C=N). UV-vis (DMSO) 280, 390, 450 nm, (reflectance) 460, 610 nm.
- 2: Yield 65%. IR 1586 cm−1 s (C=N). UV-vis (DMSO) 280, 390, 450 nm, (reflectance) 460, 610 nm.
- 3: Yield 11%. IR 1613 cm−1 s (C=N). UV-vis (DMSO) 270, 350, 540 nm, (reflectance) 460, 610 nm.
2.3. Physical Measurements
2.4. X-ray Crystallography
2.5. Computational Methods
3. Results and Discussion
3.1. Structural Characterization of Complexes
3.2. Spectral Characterization of Complexes
3.3. Spectra of Docking Cu Complex 1 and Laccase
3.4. Computational Docking of Cu Complex 1 and Laccase
3.5. Electrochemical Measurements for Docking Materials of Cu Complexes and Laccase
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Solomon, E.I.; Szilagyi, R.K.; DeBeer George, S.; Basumallick, L. Electronic structures of metal sites in proteins and models: Contributions to function in blue copper proteins. Chem. Rev. 2004, 104, 419–458. [Google Scholar] [CrossRef] [PubMed]
- Quintanar, L.; Stoj, C.; Taylor, A.B.; Hart, P.J.; Kosman, D.J.; Solomon, E.I. Shall We Dance? How A Multicopper Oxidase Chooses Its Electron Transfer Partner. Chem. Rev. 2007, 40, 445–452. [Google Scholar]
- Mate, D.M.; Alcalde, M. Laccase: A multi-purpose biocatalyst at the forefront of biotechnology. Miorobial Bioteh. 2017, 10, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Mano, N.; de Poulpiquet, A. O2 Reduction in Enzymatic Biofuel Cells. Chem. Rev. 2018, 118, 2392–2468. [Google Scholar] [CrossRef] [Green Version]
- Goff, A.; Holzinger, M.; Cosnier, S. Recent progress in oxygen-reducing laccase biocathodes for enzymatic biofuel cells. Cell. Mol. Life Sci. 2015, 72, 941–952. [Google Scholar] [CrossRef]
- Moehlenbrock, M.J.; Minteer, S.D. Extended lifetime biofuel cells. Chem. Soc. Rev. 2008, 37, 1188–1196. [Google Scholar] [CrossRef]
- Xiao, X.; Xia, H.-Q.; Wu, R.; Bai, L.; Yan, L.; Magner, E.; Cosnier, S.; Lojou, E.; Zhu, Z.; Liu, A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem. Rev. 2019, 119, 9509–9558. [Google Scholar] [CrossRef]
- Mehra, R.; Muschiol, J.; Meyer, A.S.; Kepp, K.P. A structural-chemical explanation of fungal laccase activity. Sci. Rep. 2018, 8, 17285. [Google Scholar] [CrossRef]
- Morozova, O.V.; Shumakovich, G.P.; Shleev, S.V.; Yaropolov, Y.I. Laccase-Mediator Systems and Their Applications: A Review. Appl. Biochem. Microbiol. 2007, 43, 523–535. [Google Scholar] [CrossRef]
- Sakai, H.; Mita, H.; Sugiyama, T.; Tokita, Y.; Shirai, S.; Kano, K. Construction of a Multi-stacked Sheet-type Enzymatic Biofuel Cell. Electrochemistry 2014, 82, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Hitaishi, V.P.; Clément, R.; Quattrocchi, L.; Parent, P.; Duché, D.; Zuily, L.; Ilbert, M.; Lojou, E.; Mazurenko, I. Interplay between Orientation at Electrodes and Copper Activation of Thermus thermophilus Laccase for O2 Reduction. J. Am. Chem. Soc. 2020, 142, 1394–1405. [Google Scholar] [CrossRef] [PubMed]
- Agbo, P.; Heath, J.R.; Gray, H.B. Modeling Dioxigen Reduction at Multicopper Oxidase Cathodes. J. Am. Chem. Soc. 2014, 136, 13882–13887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.-Y.; Liao, C.-I.; Lin, S.-F. Borate-fructose complex: A novel mediator for laccase and its new function for fructose determination. FEBS Lett. 2015, 589, 3107–3112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajiwara, K.; Yamane, S.; Haraguchi, T.; Pradhan, S.; Sinha, C.; Parida, R.; Giri, S.; Roymahaptra, G.; Moon, D.; Akitsu, T. Computational Design of Azo-anthraquinone Schiff Base Mn Complexes as Mediators for Biofuel Cell Cathode. J. Chem. Chem. Eng. 2019, 13, 23–33. [Google Scholar] [CrossRef]
- Sano, A.; Yagi, S.; Haraguchi, T.; Akitsu, T. Synthesis of Mn (II) and, Cu (II) complexes including azobenzene and its application to mediators of laccase for biofuel cells. J. Indian Chem. Soc. 2018, 95, 487–494. [Google Scholar]
- Kunitake, F.; Kim, J.-Y.; Yagi, S.; Yamazaki, S.; Haraguchi, T.; Akitsu, T. Chiral recognition of azo-Schiff base ligands, their Cu(II) complexes and their docking to laccase as mediators. Symmetry 2019, 11, 666. [Google Scholar] [CrossRef] [Green Version]
- Mitsumoto, Y.; Sunaga, N.; Akitsu, T. Polarized light induced molecular orientation in laccase for chiral azosalen Mn(II), Co(II), Ni(II), Cu(II), Zn(II) mediators toward application for biofuel cell. SciFed J. Chem. Res. 2017, 1, 1. [Google Scholar]
- Takeuchi, Y.; Akitsu, T. Anthraquinone Derivative Chiral Schiff Base Copper(II) Complexes for Enzyme Type Bio-Fuel Cell Mediators. J. Electr. Eng. 2016, 4, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, Y.; Sunaga, N.; Akitsu, T. Anthraquinone and L-amino Acid Derivatives Schiff Base Cu(II) Complexes as a Mediator between Cathode of Biofuel Cell and Oxygen-reducing Laccase. Trend Green Chem. 2017, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kurosawa, Y.; Tsuda, E.; Takase, M.; Yoshida, N.; Takeuchi, Y.; Mitsumoto, Y.; Akitsu, T. Spectroscopic and Electrochemical Studies on Metalloprotein (Laccase) and Cu(II) Complex Mediators As Model Systems for Biofuel Cell Cathodes. In Threonine: Food Sources, Functions and Health Benefits; Nova Science Publishers: Hauppauge, NY, USA, 2015; Chapter 4; pp. 73–86. [Google Scholar]
- Natansohn, A.; Rochon, P. Photoinduced Motions in Azo-Containing Polymers. Chem. Rev. 2002, 102, 4139–4175. [Google Scholar] [CrossRef]
- Shaw, S.; White, J.D. Asymmetric Catalysis Using Chiral Salen-Metal Complexes: Recent Advances. Chem. Rev. 2019, 119, 9381–9426. [Google Scholar] [CrossRef] [PubMed]
- Routier, S.; Cotelle, N.; Catteau, J.-P.; Bernier, J.-L.; Waring, M.J.; Riou, J.-F.; Bailly, C. Salen-Anthraquinone Conjugates. Synthesis, DNA-Binding and Cleaving Properties, Effects on Topoisomerases and Cytotoxicity. Bioorg. Med. Chem. 1996, 4, 1185–1196. [Google Scholar] [CrossRef]
- Roy, S.; Mondal, P.; Sengupta, P.S.; Dhak, D.; Santra, R.C.; Das, S.; Guin, P.S. Spectroscopic, computational and electrochemical studies on the formation of the copper complex of 1-amino-4-hydroxy-9,10-anthraquinone and effect of it on superoxide formation by NADH dehydrogenase. Dalton Trans. 2015, 44, 5428–5440. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.-F.; Qian, C.; Wang, J.-Q.; Chen, X.; Wang, L.-L.; Chao, H.; Ji, L.-N. Chiral ruthenium(II) anthraquinone complexes as dual inhibitors of topoisomerases I and II. J. Biol. Inorg. Chem. 2012, 17, 81–96. [Google Scholar] [CrossRef]
- Yildiz, E.; Keles, M.; Kaya, A.; Dincer, S. Mononuclear Fe(III), Cr(III), Co(II) Metal Complexes Based on Azo-Anthraquinone Moieties: Synthesis, Characterizations and Antibacterial Activities. Chem. Sci. Trans. 2013, 2, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Kume, S.; Murata, M.; Ozeki, T.; Nishihara, H. Reversible Photoelectronic Signal Conversion Based on Photoisomerization-Controlled Coordination Change of Azobenzene-bipyridine Ligands to Copper. J. Am. Chem. Soc. 2005, 127, 490–491. [Google Scholar] [CrossRef]
- Tylkowski, B.; Trojanowska, A.; Marturano, V.; Nowak, M.; Marciniak, L.; Giamberini, M.; Ambrogi, V.; Cerruti, P. Power of light–Functional complexes based on azobenzene molecules. Coord. Chem. Rev. 2017, 351, 205–217. [Google Scholar] [CrossRef]
- Cárdenas-Moreno, Y.; Espinosa, L.A.; Vieyto, J.C.; González-Durruthy, M.; del Monte-Martinez, A.; Guerra-Rivera, G.; López, M.I.S. Theoretical study on binding interactions of laccase-enzyme from Ganoderma weberianum with multiples ligand substrates with environmental impact. Ann. Proteom. Bioinform. 2019, 3, 001–009. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. J. Comput. Chem. 2009, 16, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Beppu, I.; Haraguchi, T.; Akitsu, T.; Parida, R.; Giri, S.; Roymahapatra, G.; Joe, I.H. Optical properties of chiral Schiff base Mn(II), Co(II), Ni(II) complexes having azobenzene. J. Indian Chem. Soc. 2018, 95, 1487–1495. [Google Scholar]
- Tanaka, S.; Sato, H.; Ishida, Y.; Deng, Y.; Haraguchi, T.; Akitsu, T.; Sugiyama, M.; Hara, M.; Moon, D. Photo-control of adsorption of dye metal complexes incorporating chiral Schiff base ligands containing azo-groups on TiO2. J. Korean Chem. Soc. 2018, 62, 328–332. [Google Scholar]
- Tsutsumi, Y.; Sunaga, N.; Haraguchi, T.; Akitsu, T. Induced CD from chiral Schiff base metal complexes involving azo-dye groups to gold nanoparticles. J. Indian Chem. Soc. 2017, 94, 1163–1172. [Google Scholar]
- Yamaguchi, M.; Tsunoda, Y.; Tanaka, S.; Haraguchi, T.; Sugiyama, M.; Noor, S.; Akitsu, T. Molecular design through orbital and molecular design of new naphthyl-salen type transition metal complexes toward DSSC dyes. J. Indian Chem. Soc. 2007, 94, 761–772. [Google Scholar]
- Onami, Y.; Kawasaki, T.; Aizawa, H.; Haraguchi, T.; Akitsu, T.; Tsukiyama, K.; Palafox, M.A. Degradation of human serum albumin by infrared free electron laser enhanced by inclusion of a salen-type Schiff base Zn (II) complex. Int. J. Mol. Sci. 2020, 21, 874. [Google Scholar] [CrossRef] [Green Version]
- Akitsu, T.; Itoh, T. Polarized spectroscopy of hybrid materials of chiral Schiff base cobalt(II), nickel(II), copper(II), and zinc(II) complexes and photochromic azobenzenes in PMMA films. Polyhedron 2010, 29, 477–487. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B.; Shikler, R.; Nabha, S.; Caruso, U. A symmetrical azo-based fluorophore and the derived salen multipurpose framework for emissive layers. Inorg. Chem. Commun. 2019, 104, 186–189. [Google Scholar] [CrossRef]
- Diana, R.; Caruso, U.; Piotto, S.; Concilio, S.; Shikler, R.; Panunzi, B. Spectroscopic Behaviour of Two Novel Azobenzene Fluorescent Dyes and Their Polymeric Blends. Molecules 2020, 25, 1368. [Google Scholar] [CrossRef] [Green Version]
- Kominato, C.; Akitsu, T. Photoinduced molecular orientation of catalytic-like chiral azo-Schiff base complexes in PMMA or laccase matrices. Lett. Appl. Nanobiosci. 2015, 2, 264–270. [Google Scholar]
- Ito, M.; Akitsu, T.; Palafox, M.A. Theoretical interpretation of polarized light-induced supramolecular orientation on the basis of normal mode analysis of azobenzene as hybrid materials in PMMA with chiral Schiff base Ni(II), Cu(II), and Zn(II) complexes. J. Appl. Solut. Chem. Model. 2016, 5, 30–47. [Google Scholar]
- Yamazaki, A.; Akitsu, T. Polarized spectroscopy and polarized UV light-induced molecular orientation of chiral diphenyl Schiff base Ni(II) and Cu(II) complexes and azobenzene in a PMMA film. RSC Adv. 2012, 2, 2975–2980. [Google Scholar] [CrossRef]
- Kominato, C.; Akitsu, T. Computational Study on UV-Vis and CD Spectra of Chiral Schiff Base Ni(II), Cu(II), and Zn(II) Complexes for Discussion of Induced CD. J. Chem. Chem. Eng. 2012, 6, 199–208. [Google Scholar]
- Akitsu, T.; Uchida, N.; Aritake, Y.; Yamaguchi, J. Induced d-d Bands in CD Spectra due to Chiral Transfer from Chiral Nickel(II) Complexes to Achiral Copper(II) Complexes and Application for Structural Estimation. Trends Inorg. Chem. 2018, 10, 41–49. [Google Scholar]
- Akitsu, T.; Uchida, N. Induced d-d bands in CD spectra of solution of chiral Schiff base nickel(II) complex and ferrocene. Asian Chem. Lett. 2010, 14, 21–28. [Google Scholar]
- Piontek, K.; Antorini, M.; Choinowski, T. Crystal Structure of a Laccase from the FungusTrametes versicolor at 1.90-Å Resolution Containing a Full Complement of Coppers. J. Biol. Chem. 2002, 277, 37663–37669. [Google Scholar] [CrossRef] [Green Version]
- Lappin, A.G.; Segal, M.G.; Weatherburn, D.C.; Sykes, A.G. Kinetic Studies on 1:1 Electron-Transfer Reactions Involving Blue Copper Proteins. 2. Protonation Effects and Different Binding Sites in the Oxidation of Parsley Plastocyanin with Co(4,7-DPSphen)33+, Fe(CN)63-, and Co(phen)33+. J. Am. Chem. Soc. 1979, 101, 2298–2301. [Google Scholar] [CrossRef]
- Chapman, S.K.; Knox, C.V.; Sykes, A.G. Kinetic studies on 1:1 electron-transfer reactions involving blue copper proteins. Part 10. The assignment of binding sites in the reactions of plastocyanin (and azurin) with non-physiological protein redox partners. J. Chem. Soc. Dalton Trans. 1984, 2775–2780. [Google Scholar] [CrossRef]
- Effects, Protein-Complex Association, and Binding Sites in Reactions of Pseudomonas aeruginosa Azurin with Co(phen)33+, Co(4,7-DPSphen)33-, and Fe(CN)63- (Oxidants) and Fe(CN)64- (Reductant). J. Am. Chem. Soc. 1979, 101, 2302–2306. [CrossRef]
- Nazmutdinov, R.R.; Bronshtein, M.D.; Zinkicheva, T.T.; Hansen, N.S.; Zhang, J.; Ulstrup, J. Chiral Selectivity in Inter-reactant Recognition and Electron Transfer of the Oxidation of Horse Heart Cytochrome c by Trioxalatocobaltate(III). Inorg. Chem. 2016, 55, 9335–9345. [Google Scholar] [CrossRef]
- Siders, P.; Cave, R.J.; Marcus, R.A. A model for orientation effects in electrontransfer Reactions. J. Chem. Phys. 1984, 81, 5613–5624. [Google Scholar] [CrossRef] [Green Version]
- Domingue, R.P.; Fayer, M.D. Influence of Orientational Fluctuations on Electron Transfer in Systems of Donor-Acceptor Pairs. J. Phys. Chem. 1986, 90, 5141–5146. [Google Scholar] [CrossRef]
Complex 1 | |||
---|---|---|---|
A:GLN242:HE22 - P:L1 | 1.10 | Hydrogen Bond | Pi-Donor Hydrogen Bond |
A:PRO396:HA - P:L1:O4 | 1.87 | Hydrogen Bond | Carbon Hydrogen Bond |
A:PHE239:HB1 - P:L1 | 2.05 | Hydrophobic | Pi-Sigma |
P:L1:H15 - P:L1:O1 | 2.21 | Hydrogen Bond | Conventional Hydrogen Bond |
A:ARG423:HD1 - P:L1:O6 | 2.24 | Hydrogen Bond | Carbon Hydrogen Bond |
P:L1:H18 - P:L1:O5 | 2.31 | Hydrogen Bond | Carbon Hydrogen Bond |
P:L1:H14 - P:L1:O1 | 2.35 | Hydrogen Bond | Carbon Hydrogen Bond |
A:ARG423:HH12 - P:L1:N3 | 2.87 | Hydrogen Bond | Conventional Hydrogen Bond |
A:SER427:HB2 - P:L1:O1 | 2.91 | Hydrogen Bond | Carbon Hydrogen Bond |
A:TYR244:OH - P:L1 | 2.93 | Other | Pi-Lone Pair |
P:L1 - A:VAL426 | 3.11 | Hydrophobic | Pi-Alkyl |
P:L1 - A:LEU451 | 3.63 | Hydrophobic | Pi-Alkyl |
P:L1 - A:ALA240 | 3.98 | Hydrophobic | Pi-Alkyl |
P:L1 - A:LEU399 | 4.01 | Hydrophobic | Pi-Alkyl |
P:L1 - A:ILE439 | 4.20 | Hydrophobic | Pi-Alkyl |
P:L1 - A:ALA240 | 4.48 | Hydrophobic | Pi-Alkyl |
P:L1 - A:ILE455 | 4.60 | Hydrophobic | Pi-Alkyl |
A:ARG423:NH2 - P:L1 | 4.65 | Electrostatic | Pi-Cation |
P:L1 - A:ILE382 | 4.76 | Hydrophobic | Pi-Alkyl |
P:L1 - A:ILE238 | 4.78 | Hydrophobic | Pi-Alkyl |
P:L1 - A:ALA240 | 4.90 | Hydrophobic | Pi-Alkyl |
P:L1 - A:VAL426 | 5.24 | Hydrophobic | Pi-Alkyl |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajiwara, K.; Pradhan, S.; Haraguchi, T.; Sinha, C.; Parida, R.; Giri, S.; Roymahaptra, G.; Akitsu, T. Photo-Tunable Azobenzene-Anthraquinone Schiff Base Copper Complexes as Mediators for Laccase in Biofuel Cell Cathode. Symmetry 2020, 12, 797. https://doi.org/10.3390/sym12050797
Kajiwara K, Pradhan S, Haraguchi T, Sinha C, Parida R, Giri S, Roymahaptra G, Akitsu T. Photo-Tunable Azobenzene-Anthraquinone Schiff Base Copper Complexes as Mediators for Laccase in Biofuel Cell Cathode. Symmetry. 2020; 12(5):797. https://doi.org/10.3390/sym12050797
Chicago/Turabian StyleKajiwara, Kazuto, Sayantan Pradhan, Tomoyuki Haraguchi, Chittaranjan Sinha, Rakesh Parida, Santanab Giri, Gourisankar Roymahaptra, and Takashiro Akitsu. 2020. "Photo-Tunable Azobenzene-Anthraquinone Schiff Base Copper Complexes as Mediators for Laccase in Biofuel Cell Cathode" Symmetry 12, no. 5: 797. https://doi.org/10.3390/sym12050797