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Abstract: Induced chirality (achiral target in chiral matrix such as proteins) sometimes play a
useful role in evaluating supramolecular systems involving biomolecules. Enzymatic fuel cells,
which generate electricity via enzymatic redox reactions at electrodes hold a significant potential for
sustainable power. Bacterial laccase, a multi-copper oxidase, was used in the cathodic compartment
of the enzymatic biofuel cells because of its low redox potential. Three new salen Cu(II) complexes
were designed and investigated as mediators. The Schiff base ligands consisted of both a redox-active
(anthraquinone) and a photochromic (azobenzene) moiety. The interaction between laccase and a
mediator was examined with induced circular dichroism (CD) and the docking tool to observe in
which of the laccase domains the mediators bind as well as study the photo-induced tuning of both
the cis-trans photoisomerization and orientation by the Weigert effect. Both the electrochemical and
photochromic properties are also discussed and compared using density functional theory (DFT),
time-dependent (TD)-DFT, and docking simulations.
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1. Introduction

Laccase is an enzyme that catalyzes the four-electron reduction of oxygen to water through
four copper atoms. A protein that includes copper atoms is referred to as multicopper oxidase [1–3].
The four copper atoms that are the active sites of the laccase are divided into three types (T1–T3) and
T2 copper and the two T3 copper form triple nuclear clusters. T1 copper first receives electrons from
the substrate and oxidizes the substrate, which is followed by a four-electron reduction at the T2 and
T3 sites (Figure 1). Multicopper oxidase such as laccase is used as an enzyme on the cathode side of the
enzyme-type biofuel cell [4–7]. Because biofuel cells use bio-based catalysts, they have the advantage
to generate electricity at room temperature and low environmental load [8–10]. However, there is
also a drawback that enzyme stability is lacking, and the electric power is smaller than that of other
fuel cells. The following ways will be explored to solve the disadvantage of low power. A mediator
that assists the donation and reception of the electron has been used for electron transfer between the
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electrode and laccase [11–13]. A mediator is a substance that assists donating and receiving electrons
and is sandwiched between an electrode and an enzyme [13].

To improve this electron transfer between the electrode and laccase, several types of metal
complexes were investigated as mediators [14–20]. Molecular docking of suitable compounds
(both ligands and complexes) to the hydrophobic pocket of laccase is useful to predict the distance or
path of electron transfer and their effectivity in biofuel cells. For such hydrophobic weak interactions,
induced chirality (namely characteristic CD bands) from chiral (asymmetric) protein matrix proteins
sometimes play a useful role in evaluating a supramolecular interaction even for achiral guests.
The presence of a noncoordinating, non-innocent substituent in the ligand backbone of the metal ligand
or complex may be induced by the polarized UV-light to control the rate of redox processes [16,17].
In particular, the azobenzene moiety exhibits not only cis-trans photoisomerization but also the Weigert
effect (molecular alignment induced by polarized UV light) [21], while controlling the molecular
orientation for a suitable fitting. Herein, we designed new salen Cu(II) complexes as mediators.
Generally, (chiral) salen metal complexes have been employed as (asymmetric) catalysis because
of their advantage of stereochemical tuning (with respect to chirality) and redox properties with
proper metal ions [22]. The Schiff base consisted of a redox-active (anthraquinone) [23–26] and
photochromic (azobenzene) moiety [26–28]. Molecular docking [29] was conducted to investigate
in which hydrophobic domain of the laccase the salen Cu(II) complexes are bound (Figure 2). Both
electrochemical and photochromic properties were examined and compared with the density functional
theory (DFT)/ time-dependent (TD)-DFT computed functions.
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Figure 1. Structure of the enzyme, Trametes versicolor laccase (PDB ID: 1GYC), showing the three
domains and the T1, T2, and T3 copper sites. Though laccase may form trimer assembly of three
domains, each laccase molecule has one binding pocket.
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Japan) with optical filters (UV, λ = 200–400 nm) by using optical fibers and a polarizer through optical 
filters (Sigma Koki, Tokyo, Japan). 

Figure 2. Structures of Cu(II) complexes 1-3. (1) R1 = OCH3, R2 = H, (2) R1 = H, R2 = H, and (3) R1 = H,
R2 = Cl.

2. Materials and Methods

2.1. General Procedure

All chemicals of the highest commercial grade available (solvents from Kanto Chemical, Tokyo,
Japan), organic compounds (Tokyo Chemical Industry, Tokyo, Japan), and metal sources and laccase
(from Trametes versicolor) from Wako (Osaka, Japan) were used as received without further purification.

2.2. Preparations

2-Hydroxy-3-methoxy-5-phenyldiazobenzaldehyde, 2-hydroxy-5-phenyldiazobenzaldehyde, and
2,6-dichlorophenyl-2-hydroxy-5-phenyldiazobenzaldehyde (as precursors of 1–3, respectively) were
prepared according to the literature procedure using the corresponding precursor aldehydes [14].
The key reaction to form Schiff base is condensation of amine and aldehyde found by Hugo classically.
Each of them (0.26 g, 1 mmoL) was added to a methanol solution (80 mL) of 1,2-diaminoanthraquinon
(0.12 g, 0.5 mmoL) and stirred for 2 h at 318 K. Then Cu(CH3COO)2 (0.1 g, 0.5 mmoL) was added and
stirred for 2 h at 318 K. A green crude product was obtained by filtration after evaporation and the
product was recrystallized from hexane (less than 10 mL) and dried to yield 1–3, respectively. Mass
spectra could not be tried because of the lack of suitable solvents. Infrared (IR) and electronic (UV-vis)
spectra are below.

1: Yield 48%. IR 1598 cm−1 s (C=N). UV-vis (DMSO) 280, 390, 450 nm, (reflectance) 460, 610 nm.
2: Yield 65%. IR 1586 cm−1 s (C=N). UV-vis (DMSO) 280, 390, 450 nm, (reflectance) 460, 610 nm.
3: Yield 11%. IR 1613 cm−1 s (C=N). UV-vis (DMSO) 270, 350, 540 nm, (reflectance) 460, 610 nm.

2.3. Physical Measurements

Infrared (IR) spectra were measured on a JASCO (Tokyo, Japan) FT-IR 4200 spectrophotometer in
the range of 4000–400 cm−1 at 298 K. (Polarized or normal) electronic (UV-vis) spectra were measured
on a JASCO (Tokyo, Japan) V—650 spectrophotometer equipped with a polarizer in the range of
800–220 nm at 298 K. Circular dichroism (CD) spectra were recorded on a JASCO (Tokyo, Japan) J—725
spectropolarimeter in the range of 800–200 nm at 298 K. Electrochemical cyclic voltammetry (CV)
were performed with a BAS (Tokyo, Japan) SEC2000—UV/vis and ALS2323 system with Ag/AgCl
electrodes in the range of −0.50 to 0.80 V vs. Ag/Ag+. Photo-illumination of linearly polarized UV
light was carried out using a lamp (1.0 Mw·cm−2) by Hayashi Tokei (Tokyo, Japan) with optical filters
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(UV, λ = 200–400 nm) by using optical fibers and a polarizer through optical filters (Sigma Koki,
Tokyo, Japan).

2.4. X-ray Crystallography

Powder X-ray diffraction patterns of 1–3 were measured at 298 K using a CuKα source
(about 0.154 nm) with Rigaku Smart Lab (Tokyo, Japan). The Rietveld analysis was carried out with a
commercially available program package Rigaku PDXL2 ver.2.2.1.0 (Tokyo, Japan), by the following
procedures: (measurement), indexing, cell and space group determination, input composition, and an
initial structural model from DFT results, direct space method, addition of (isotoropic) displacement
parameters for non-hydrogen atoms, and refinement with hydrogen atoms under restraint. Although
powder analysis generally may exhibit relatively high Rwp values, the purpose of crystal structures in
this paper was not a closely quantitative discussion of bond distances nor angles but merely confirming
newly prepared compounds mentioning overall structures.

Crystallographic data of 1: C42H28CuN6O6, Mw = 776.25, T = 298 K, Triclinic, P-1(#2), Z = 2,
a = 11.756(18), b = 16.051(19), c = 11.189(13) Å, α = 81.22(8), β = 83.61(7), γ = 78.40(6)◦, V = 2037(5) Å3,
D = 1.266 g·cm−3, F(000) = 798, S = 6.8694, Rwp = 5.45%.

Crystallographic data of 2: C40H24CuN6O4, Mw = 716.20, T = 298 K, Triclinic, P-1(#2), Z = 2,
a = 12.619(19), b = 16.003(17), c = 11.28(2) Å, α = 101.41(10), β = 98.25(13), γ = 110.70(8)◦, V = 2128(6)
Å3, D = 1.118 g·cm−3, F(000) = 734, S = 10.7396, Rwp = 7.63%.

Crystallographic data of 3: C40H20Cl4CuN6O4, Mw = 853.97, T = 298 K, Triclinic, P-1(#2), Z = 2,
a = 14.025(6), b = 12.056(4), c = 18.103(9) Å, α = 98.63(2), β = 99.663(16), γ = 102.33(2)◦, V = 2893(2) Å3,
D = 0.980 g·cm−3, F(000) = 862, S = 9.63, Rwp = 10.53%.

2.5. Computational Methods

Within the density functional theory framework, the B3LYP level of theory with an SDD basis set
was used to optimize all the studied complexes. A vibrational frequency analysis was also performed to
ensure the local minimum of the complexes. All the optimizations were done using the Gaussian 09W
software Revision D.02 (Gaussian, Inc., Wallingford, CT, USA) [30]. To know the orbital information
of the optimized structures, the TDDFT methodology, which is implemented in G09W, was used.
Gaussian software was applied to calculate the density of the state (DOS) and partial DOS (PDOS).
The solvent medium was incorporated with the polarizable continuum model (PCM). Docking of
metal complexes was carried out with AutoDock 4.2.6 [31] on a Windows 10 platform with 8 GB RAM
(random access memory) and Intel I 5 processor.

3. Results and Discussion

3.1. Structural Characterization of Complexes

All complexes 1–3 displayed a four-coordinated slightly distorted square planar trans-[N2O2]
coordination geometry (which is in agreement with EPR of 2 and 3 in the solid state as S = 1/2 in the
Supporting Information) and all atoms are located approximately within a plane, which suggests an
extended conjugate system in the ligands. Figures 3–5 depict the crystal structures of 1–3, respectively.
Within the precision of the powder analysis, geometries of the organic ligand moiety exhibited normal
values for the related compounds [17,32–34]. Overall structures (for example, around azo groups) were
also similar to the density functional theory (DFT) optimized structures mentioned before. However,
DFT optimized structures were not a complete square planar geometry but were somewhat distorted.
Despite the photoisomerization of the azo groups, the salen skeleton and the organic ligands kept
rigid structures. As the crystal structures indicate, the coordination in solutions of solvents is possible.
Empty apical sites may potentially accept them in an axial position [35].
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Figure 3. Crystal structure of 1 showing a selected atom labeling scheme. Selected bond lengths [Å] and
angles [◦] are as follows: Cu1-O2 = 1.854(2), Cu1-O3 = 1.885(3), Cu1-N1 = 1.957(3), Cu1-N3 = 1.913(2),
N2-N4 = 1.2542(18), N5-N6 = 1.2352(14), Cu1-O2-C40 = 126.02(7), Cu1-O3-C1 = 125.24(8),
Cu1-N1-C5 = 115.18(7), Cu1-N3-C3 = 119.16(8), Cu1-N3-C4 = 115.71(7), O2-Cu1-O3 = 88.66(7),
O2-Cu1-N1 = 95.68(7), O2-Cu1-N3 = 175.080(8), O3-Cu1-N1 = 174.206(11), O3-Cu1-N3 = 95.81(7),
N1-Cu1-N3 = 79.72(7), Cu1-N1-C31 = 122.66(8).
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Figure 4. Crystal structure of 2 showing a selected atom labeling scheme. Selected bond lengths [Å] and
angles [◦] are as follows: Cu1-O1 = 1.975(3), Cu1-O2 = 1.855(3), Cu1-N1 = 1.929(3), Cu1-N2 = 2.040(4),
N3-N5 = 1.237(2), N4-N6 = 1.336(2), Cu1-O1-C32 = 132.03(9), Cu1-O2-C40 = 128.92(11),
Cu1-N2-C2 = 129.49(10), Cu1-N1-C5 = 108.02(12), Cu1-N2-C4 = 111.01(13), O1-Cu1-O2 = 93.35(13),
O1-Cu1-N1 = 91.60(13), O1-Cu1-N2 = 175.792(9), O2-Cu1-N1 = 171.321(17), O2-Cu1-N2 = 88.64(13),
N1-Cu1-N2 = 86.90(13), Cu1-N1-C3 = 119.52(11).
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angles [◦] are as follows: Cu1-O1 = 1.9057(7), Cu1-O2 = 1.9386(8), Cu1-N1 = 1.9574(8), Cu1-N2 = 2.0150(8),
N3-N3 = 1.2798(5), N5-N6 = 1.2794(5), Cu1-O1-C36 = 126.37(3), Cu1-O2-C35 = 128.31(2),
Cu1-N2-C10 = 111.81(2), Cu1-N1-C27 = 124.98(3), Cu1-N2-C38 = 118.92(2), O1-Cu1-O2 = 93.35(13),
O1-Cu1-N1 = 176.590(2), O1-Cu1-N2 = 94.63(3), O2-Cu1-N1 = 92.35(3), O2-Cu1-N2 = 171.250(4),
N1-Cu1-N2 = 82.30(3), Cu1-N2-C39 = 112.58(3).

3.2. Spectral Characterization of Complexes

IR spectra for 1–3 exhibited characteristic and strong imine C = N bands around 1600 cm−1 for the
Schiff base metal complexes. Slight shifts of these bands may be attributed to electronic aspects of
the ligand of the complexes because the coordination geometries of the complexes are similar to each
other [17,36].

Electronic, UV-vis (ultraviolet-visible) spectra for 1–3 in DMSO solutions displayed two π-π*
bands around 250–350 nm and a n-π* band due to anthraquinone at about 480 nm. This is because
the first absorption band (n-π* transition) of anthraquinone, which usually appears around 400 nm,
experiences a shift to longer wavelength if it contains an electron donating substituent. The salen
skeleton is formed or the metal includes an electron donating function [17]. Only 3 exhibited a
considerable shift to longer wavelength. The qualitative assignments for 1 and 2 were also supported
by DFT calculations (Table S1 and Figure 6). Obtaining agreeable data for 3 was difficult due
to electron-withdrawing Cl-groups. The calculated DFT data for 1 for doublet ground states
were as follows: energy = −2593.588 a.u., alpha HOMO = −0.371 a.u., LUMO = −0.357 a.u.,
beta HOMO = −0.371 a.u., and LUMO = −0.356 a.u. For 2, on the other hand, the calculated
data were as follows: energy = −2364.606 a.u., alpha HOMO = −0.398 a.u., LUMO = −0.335 a.u., beta
HOMO = −0.397 a.u., and LUMO = −0.335 a.u.

To obtain the bonding pattern of the complexes, we generated density of state (DOS) and
partial DOS (PDOS). The corresponding graphs are provided in Figure S2. The PDOS generated
the frontier molecular orbitals of these complexes from the contribution of the meal and ligand
orbitals. From Figure 6, it is evident that the HOMO (highest occupied molecular orbital) and LUMO
(lowest unoccupied molecular orbital) for complex 1 are created by the mixture of Cu and ligand orbitals.
Whereas, for complex 2, the contribution is mainly related to the ligand. The metal contribution for
complex 2 corresponds to higher unoccupied molecular orbitals like LUMO+3, LUMO+4, etc.
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Figure 6. Distribution of HOMO and LUMO for trans-form of 1 by TD-DFT calculations.

Figure 7 exhibits the change of UV-vis spectra due to the trans- to cis-photoisomerization of
azobenzene moiety of 1, which displays a shift of π-π* bands to a shorter wavelength [37]. The stable
trans-form was converted to the cis-form by a metal-to-ligand charge transfer (MLCT) transition,
whereby electrons move to the ligand (Figure 6), as well as other transitions, when irradiated by
natural, namely unpolarized UV light [32,33]. Slow photoisomerization resulted in overlap of red
and blue lines in Figure 7. Moreover, the reversible cis-trans photoisomerization, which converts
the cis- to the trans-form by visible light irradiation, was observed for all complexes. However,
the photoisomerization for 3 did not occur as smoothly when compared to that of 1 or 2. Azobenzene
dyes ending with electron-withdrawing or donor groups were reported to shift absorption or emission
wavelengths and even affect photoisomerization [37,38]. Therefore, 1, which exhibited the most
efficient cis-trans photoisomerization, will mainly be discussed from here on.
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Red: 10 min, and Green: 20 min).

For a measurement of the angle-dependent polarized UV-vis absorption spectra at 320 nm,
cast films were prepared by mixing a 5 wt% polymethyl methacrylate (PMMA) in DMF solution
(PMMA: complex = 2:1). To evaluate the Weigert effect, we employed the R parameter to describe the
degree of the photo-induced optical anisotropy [39–42].

R =
A0

A90
(1)
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where A90 and A0 denote the absorbance values measured with the measuring polarizer perpendicular
or parallel to the direction of the electric vector of the irradiation of linearly polarized light. For polarized
UV-vis spectra, completely isotropic chromophores are indicated by R = 1. Hence, the R parameter
changes as the dichroism by alignment increases. The molecules in PMMA films were anisotropically
oriented in the order of 2 (R = 0.94) > 1 (R = 0.95) > 3 (R = 1.01).

3.3. Spectra of Docking Cu Complex 1 and Laccase

Figure 8a shows UV-vis spectra (phosphate buffer at pH 7.3) of laccase, complex 1, and spectral
changes when laccase was added in 0.5, 1, 1.5, 2.0 equivalents to 1, respectively. Pure laccase exhibited
different spectrum than complexes excess ones, which may depend on associating features of two
components resulting in induced CD. Adding laccase, an increase in the laccase-derived peak near
230 nm was observed. The most appropriate ratio of 1: laccase according to Figure 8a was 1:1. As a
result of the corresponding CD measurements (Figure 8b), a change was observed in the band at
about 230 nm attributed to the α-helix helical structure, using a 1:1 ratio of 1:laccase (their amounts
were 6.0 × 10−6 mol) [16,19]. The CD spectrum of laccase agrees with analogous spectra reported for
various types of laccase. Although no CD signals were expected for the achiral 1, isolated (excess) 1
also exhibited a CD spectrum. The induced CD signals of 1 derived from chiral laccase molecules may
be ascribed to a different spectrum [43–45].
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3.4. Computational Docking of Cu Complex 1 and Laccase

The protein structure of Trametes versicolor laccase was retrieved from the protein data bank
(PDB ID: 1GYC) [46]. The A chain of laccase was modified by removing the alternate structure, water,
and bound ligand. Missing amino acids were checked and hydrogen atoms (polar) were added to
the protein structure. Center Grid box x:16.895, y:21.372, z:37.151 and number of points in x, y, z
dimensions were considered as 30 × 30 × 30 points, respectively. The grid spacing applied was 0.3750 Å.
The three-dimensional structures of the complexes, which are essential for docking were obtained
from the optimized structure using DFT results. Autodock Tools modified the protein (laccase) and
ligand (the Cu complexes) structures. Ligands were prepared by adding Gasteiger charges, detecting
root, and choosing torsions from the torsion tree of the Autodock Tools panel. The docking procedure
was carried out using the Lamarckian genetic algorithm. The best-fit ligand conformations were
selected based on their minimum binding energies. Complex 1 showed the highest docking score, i.e.,
−10.5 kcal/mol (−8.6 and −9.9 kcal/mol for 2 and 3, respectively). It formed some bonds with laccase
(Figure 9, Table 1, and Table S2).

The docking results showed that three salen derivatives of Cu(II) complexes are bound to the
domain three of laccase binding hydrophobic pockets with close vicinity to T1 copper of laccase [14].
The interaction were not only predominantly hydrogen bonds but also hydrophobic or electrostatic
ones, as mentioned in Table 1 and Table S2. The ligand of 1 has formed eight hydrogen bonds ranging
from 1.10 Å to 2.91 Å, eleven hydrophobic bonds ranging from 2.05 Å to 5.24 Å, and an Electrostatic
bond. Ligand 2 has formed three hydrogen bonds ranging from 2.20 Å to 2.36 Å, 17 hydrophobic
bonds ranging from 3.58 Å to 5.44 Å, and two Electrostatic bonds ranging from 3.33 Å to 3.49 Å.
Ligand3 has formed six hydrogen bonds from a range of 1.06 Å to 2.94 Å, 13 hydrophobic bonds
ranging from 2.05 Å to 5.45 Å, and two Electrostatic bonds ranging from 3.33 Å to 3.49 Å. The amino
acids surrounding T1 are Histidine 395, Cysteine 453, and Histidine 458, which play an essential role
during the catalytic action (Figure S3 and Figure 9). Aspartic acid (Asp 206), near the His 458 of the T1
copper site, located at the bottom of the domain contributes to substrate stabilization and orientation
(through O–H interactions) at the T1 copper site for a catalytic function through the participation
of a fully conserved His 458. Asp 206 acts as an essential mechanistic element, which promotes the
electron subtraction and transfer from the substrate (namely donor molecules) to the T1 copper ion
(Cu2+

→Cu1+) through a direct interaction with His 458 at the T1 copper site (Figure 10). As the ligands
(mediators) are bound in domain three close to T1 copper and Asp 206 of laccase, it is expected that
they support the transfer of electrons from the cathode to laccase.
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Figure 9. Comprehensive laccase receptor and copper complex interaction after docking. The copper
complex is docked at the active site of the laccase receptor. The secondary structure of the laccase
receptor is represented by the line model, and the copper complex is represented by the stick model.
It depicts details around docking sites and a Cu complex.
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Table 1. Bond distances and type between the laccase receptor and Complex 1.

Complex 1

A:GLN242:HE22 - P:L1 1.10 Hydrogen Bond Pi-Donor Hydrogen Bond

A:PRO396:HA - P:L1:O4 1.87 Hydrogen Bond Carbon Hydrogen Bond

A:PHE239:HB1 - P:L1 2.05 Hydrophobic Pi-Sigma

P:L1:H15 - P:L1:O1 2.21 Hydrogen Bond Conventional Hydrogen Bond

A:ARG423:HD1 - P:L1:O6 2.24 Hydrogen Bond Carbon Hydrogen Bond

P:L1:H18 - P:L1:O5 2.31 Hydrogen Bond Carbon Hydrogen Bond

P:L1:H14 - P:L1:O1 2.35 Hydrogen Bond Carbon Hydrogen Bond

A:ARG423:HH12 - P:L1:N3 2.87 Hydrogen Bond Conventional Hydrogen Bond

A:SER427:HB2 - P:L1:O1 2.91 Hydrogen Bond Carbon Hydrogen Bond

A:TYR244:OH - P:L1 2.93 Other Pi-Lone Pair

P:L1 - A:VAL426 3.11 Hydrophobic Pi-Alkyl

P:L1 - A:LEU451 3.63 Hydrophobic Pi-Alkyl

P:L1 - A:ALA240 3.98 Hydrophobic Pi-Alkyl

P:L1 - A:LEU399 4.01 Hydrophobic Pi-Alkyl

P:L1 - A:ILE439 4.20 Hydrophobic Pi-Alkyl

P:L1 - A:ALA240 4.48 Hydrophobic Pi-Alkyl

P:L1 - A:ILE455 4.60 Hydrophobic Pi-Alkyl

A:ARG423:NH2 - P:L1 4.65 Electrostatic Pi-Cation

P:L1 - A:ILE382 4.76 Hydrophobic Pi-Alkyl

P:L1 - A:ILE238 4.78 Hydrophobic Pi-Alkyl

P:L1 - A:ALA240 4.90 Hydrophobic Pi-Alkyl

P:L1 - A:VAL426 5.24 Hydrophobic Pi-Alkyl
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Figure 10. Representation of the mechanism on the active site of laccase. Copper (in violet) is involved
in the electron transfer, stabilization, and orientation of the mediators. The surrounding amino acids
are represented in sky blue. The mediator is in black and aspartic acid (206) is in grey.
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3.5. Electrochemical Measurements for Docking Materials of Cu Complexes and Laccase

Electron transfer from mediator to copper sites are shown in Figure 10 in which redox properties
of each metal site are important. Figure 11 shows the results of the cyclic voltammetry (CV) for 1–3.
A glassy carbon (GC) electrode was used as a working electrode. The working electrode was prepared
with respect to the following procedure. First, 5 mg of the complex was placed in 2 mL of acetone,
mixed well with an ultrasonic cleaner, and then 40 µL dropped on the glassy carbon electrode and
air-dried. The elution of the complex into the buffer solution was stopped by applying 10 µL of a 5 wt%
Nafion® aliphatic alcohol-containing aqueous solution containing 45% of a conductive film (acetate
buffer pH 5.0, 200 mM. scan 0.05 V/s) [14,16]. The oxidation potential derived from the central metal
(copper) was observed in the range of 0 V, 0.1 to 0.2 V. For each complex, a significant current increase
was confirmed after irradiation with linearly polarized UV light, which was attributed to changes in
the electronic states of the complexes, switching from the trans-form to the cis-form.
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Figure 11. Cyclic voltammetry (CV) (50 mV/s, 200 mM acetate buffer, pH 5.0) for 1–3 (blue: trans-form,
red, cis-form) before and after linearly polarized UV light irradiation for 3 min.

A laccase solution was prepared by dissolving 5 mg of laccase in 1 mL of ultrapure water and applied
to 20 µL of the electrode. Then the electrode was dried. The elution of laccase into the buffer solution was
stopped by applying 10 µL of a 5 wt% Nafion® aliphatic alcohol-containing aqueous solution containing
45% of a conductive film (acetate buffer pH 5.0, 200 mM, scan 0.05 V/s). In the case of CV using solely
laccase (Figure 12 [top graphs]), laccase exhibited catalytic oxygen reduction under an oxygen purge.
Furthermore, CV measurements were also performed for laccase and 1–3 as mediators (Figure 12 [bottom
graphs]). In order to confirm the four-electron reduction of oxygen by laccase including mediators, CV
measurements and comparisons were performed using an oxygen purge. For each of the complexes with
inclusion of the mediator, an increase in the oxygen reduction peak was observed. The potential was
positively shifted for 2 and 3, and the current was increased for 1 and 2.
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Figure 12. [Top graphs] Cyclic voltammetry (CV) (50 mV/s, 200 mM acetate buffer, pH 5.0) {right graph}
for only laccase under nitrogen (blue) and oxygen purge (red) without ultraviolet (UV) light irradiation,
{left graph} for laccase under oxygen purge before (blue) and after (red) natural UV light irradiation for
3 min. [Bottom graphs] CV (50 mV/s, 200 mM acetate buffer, pH 5.0) 1, 2 or 3 + laccase under nitrogen
(blue) and oxygen purge (red) without UV light irradiation.

When unpolarized UV light was irradiated onto the hybrid materials of laccase and complexes
1–3 (Figure 13 (top), CV changes occurred because of the differences in the electronic states of the
trans-form and cis-form of the complexes induced by photoisomerization, as indicated in Figure 11.
The differences in the complexes also affected the mediator performance. On the other hand, when
irradiated with linearly polarized UV light (Figure 13 (bottom), CV differences not only resulted
from the trans-cis photoisomerization but also from irradiation with the non-polarized natural UV
light. The latter difference could be attributed to the molecular orientation of the mediator complexes
caused mainly by the Weigert effect. It was observed that the electron transfer between mediator to
laccase can be controlled not only by the electronic states of the mediators but also by steric factors
(spatial orientation and molecular docking). However, the path (through space or through bonds) and
mechanism of the electron transfer is not clear because reaction rates [47–49] and spatial structures
(such as chiral recognition) [50] could not be reliably explained with the present systems.
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The cathode reduction rate of biofuel cells depends on the efficiency of the long-range electron
transfer process. To improve this electron transfer, several types of metal complexes were investigated
as mediators between the electrode and laccase. The four copper atoms that are the active centers
of the laccase are divided into three types (T1, T2, and T3) (α and β). The T2 copper and the two
T3 copper form triple nuclear clusters. The T1 copper first receives electrons from the substrate and
oxidizes the substrate, e.g., acting as a mediator in this case, which is followed by a four-electron
reduction at T2 and T3 sites. A mediator is a substance sandwiched between an electrode and an
enzyme that assists in donating and receiving electrons. Proposed docking sites were elucidated by
computational simulation even though experiments exhibited changes of CV by irradiation of UV
light, which occurred as both electronic changes and steric changes. Although intramolecular paths in
laccase of electron transfer and electrochemical features of metal complexes were clear, the mechanism
of electron transfer between metal complexes to laccase should be further understood.

The photochromic azobenzene moiety improves both the electronic structure and the steric
orientation. Moreover, quinones (anthraquinone) and metal (Cu(II/I)) in the complexes can potentially
be used as a mediator. Metalloproteins such as laccase can be regarded as metal complexes but have
a complicated structure and complex ligands. In the case of phenolate, thiolate, oxo, sulfide, and
N-heterocyclic chelates, the metal complex shows a very strong low-energy charge-transfer absorption
band, which exhibited highly covalent ligand-metal bonds. These complexes are unique compared
to the smaller copper complexes and exhibit spectral features derived from geometric and electronic
structures of the metal ions resulting from the interaction with the protein biopolymers. Molecular
docking of suitable compounds (both ligands and complexes) inside or on the surface of an enzyme
with appropriate steric formation of the hydrophobic laccase pocket may be useful to predict their redox
activity and suitability as biofuel cells. The present study suggested an experimental fact of salen-type
mediator’s molecular orientation dependence of electron transfer for the first time. Previous Mn
paper [14] did not exhibit photo tuning of molecular orientation but effects due to photoisomerization.

These factors (electronic, steric, or spatial factors) contribute considerably to the electronic structure
of the active site, which affected the geometry of the metal site, the orientation of the ligand-metal
bond, and the conformation of the protein. Since the mediator not only influences the reaction rate of
the enzyme but also the electron transfer rate, the selection of the optimum mediator and its better
docking features is still one of the most important future research subjects.

4. Conclusions

In enzymatic fuel cells, the transfer of electrons between the enzyme and the electrode is an
important issue to overcome and challenging to crate and detection of hybrid materials. In this work,
azo-anthraquinone salen Cu complexes were tested as a mediator for laccase. It was concluded from
experiments that photo-tuning of electronic states and molecular orientation of the mediators resulted in
differences of the electron transfer performance to laccase. Docking of achiral mediators to the surface of
laccase (chiral protein) was confirmed and induced CD due to chiral environment. Docking simulation
discussed the supramolecular interactions such as hydrogen bond and hydrophobic interaction.

There are several methods to directly deliver electrons into biofuel cells, such as using mediators
or metal nanoparticles (having the advantage in spatial distance), or metal complexes (such as ferrocene
and [Fe(CN)6]3-/4-) [20] and organic molecules bound to the surface of protein molecules (having
an advantage in current amounts). Besides these types of potential mediators or common organic
mediators, the present azo-anthraquinone salen Cu complexes were confirmed to have advantage
of photo-tuning their electronic states and spatial orientation. Among three complexes, 1 without
disturbing substituent groups of electronic effects was comprehensively suitable for this purpose.

Even the theoretical studies can investigate electronic structures of photo-isomers at a molecular
level. Experimental results herein also suggested that the electron transfer was related not only to
electronic states but also reasonably to the molecular orientation [51,52]. Further studies are required to
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specify the electron transfer mechanism and the electron path using appropriate experimental systems
such as a modified electrode of laccase-mediator systems connected via enantiomers of oligopeptides.
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complex ligands (pink) with laccase receptor amino acids (sky blue) omitting the laccase receptor. The ligands
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