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Abstract: A family F is an intersecting family if any two members have a nonempty intersection.
Erdős, Ko, and Rado showed that |F | ≤ (n−1

k−1) holds for a k-uniform intersecting family F of subsets
of [n]. The Erdős-Ko-Rado theorem for non-uniform intersecting families of subsets of [n] of size
at most k can be easily proved by applying the above result to each uniform subfamily of a given
family. It establishes that |F | ≤ (n−1

k−1) + (n−1
k−2) + · · · + (n−1

0 ) holds for non-uniform intersecting
families of subsets of [n] of size at most k. In this paper, we prove that the same upper bound of
the Erdős-Ko-Rado Theorem for k-uniform intersecting families of subsets of [n] holds also in the
non-uniform family of subsets of [n] of size at least k and at most n− k with one more additional
intersection condition. Our proof is based on the method of linearly independent polynomials.
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1. Introduction

Let [n] be the set {1, 2, · · · , n}. A family F of subsets of [n] is intersecting if F ∩ F′ is non-empty for
all F, F′ ∈ F . A family F of subsets of [n] is t-intersecting if |F ∩ F′| ≥ t holds for any F, F′ ∈ F . A family
F is k-uniform if it is a collection of k-subsets of [n]. In 1961, Erdős, Ko, and Rado [1] were interested
in obtaining an upper bound on the maximum size that an intersecting k-uniform family can have and
proved the following theorem which bounds the cardinality of an intersecting k-uniform family.

Theorem 1 (Erdős-Ko-Rado Theorem [1]). If n ≥ 2k and F is an intersecting k-uniform family of subsets of
[n], then

|F | ≤
(

n− 1
k− 1

)
.

Erdős-Ko-Rado Theorem is an important result of extremal set theory and has been an inspiration
for various generalizations by many authors for over 50 years. Erdős, Ko, and Rado [1] also proved
that there exists an integer n0(k, t) such that if n ≥ n0(k, t), then the maximum size of a t-intersecting
k-uniform family of subsets of [n] is (n−t

k−t). The following generalization of the Erdős-Ko-Rado Theorem
was proved by Frankl [2] for t ≥ 15, and was completed by Wilson [3] for all t. It establishes that the
generalized EKR theorem is true if n ≥ (k− t + 1)(t + 1).

Theorem 2 (Generalized Erdős-Ko-Rado Theorem [2,3]). If n ≥ (k − t + 1)(t + 1) and F is a
t-intersecting k-uniform family of subsets of [n], then we have

|F | ≤
(

n− t
k− t

)
.
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The Erdős-Ko-Rado Theorem can be restated as follows.

Theorem 3 (Erdős-Ko-Rado Theorem [1]). If F is a family of subsets Fi of [n] with |Fi| = k and |Fi| ≤ n− k
that satisfies the following two conditions, for i 6= j

(a) 1 ≤ |Fi ∩ Fj| ≤ k− 1
(b) 1 ≤ |Fi ∩ Fc

j | ≤ k− 1

then we have

|F | ≤
(

n− 1
k− 1

)
.

2. Results

The following EKR-type theorem for non-uniform intersecting families of subsets of [n] of size at most
k can be easily proved by applying Theorem 3 to each uniform subfamily of the given non-uniform family.

Theorem 4. If F is a family of subsets Fi of [n], with |Fi| ≤ k and n ≥ 2k, that satisfies the following two
conditions, for i 6= j

(a) 1 ≤ |Fi ∩ Fj| ≤ k− 1
(b) 1 ≤ |Fi ∩ Fc

j | ≤ k− 1

then we have

|F | ≤
(

n− 1
k− 1

)
+

(
n− 1
k− 2

)
+ · · ·+

(
n− 1

0

)
.

In 2014, Alon, Aydinian, and Huang [4] gave the following strengthening of the bounded rank
Erdős-Ko-Rado theorem by obtaining the same upper bound under a weaker condition as follows.

Theorem 5 (Alon, Aydinian, and Huang [4]). Let F be a family of subsets of [n] of size at most k, 1 ≤ k ≤
n− 1. Suppose that for every two subsets A, B ∈ F , if A ∩ B = ∅, then |A|+ |B| ≤ k. Then we have

|F | ≤
(

n− 1
k− 1

)
+

(
n− 1
k− 2

)
+ · · ·+

(
n− 1

0

)
.

Since the bound (n−1
k−1) + (n−1

k−2) + · · ·+ (n−1
0 ) is much larger than (n−1

k−1), this leads to the following
interesting question: when is it possible to get the same bound as in the Erdős-Ko-Rado theorem for
uniform intersecting families for the non-uniform intersecting families? We answer this question in
the main result of this paper, where we prove that the same upper bound of the EKR Theorem for
k-uniform intersecting families of subsets of [n] also holds in the non-uniform family of subsets of [n]
of size at least k and at most n− k with one more additional intersection condition, as follows.

Theorem 6. If F is a family of subsets Fi of [n] with k ≤ |Fi| ≤ n − k that satisfies the following three
conditions, for i 6= j

(a) 1 ≤ |Fi ∩ Fj| ≤ k− 1
(b) 1 ≤ |Fi ∩ Fc

j | ≤ k− 1
(c) 1 ≤ |Fc

i ∩ Fc
j | ≤ k− 1

then we have

|F | ≤
(

n− 1
k− 1

)
.

Please note that if we remove the third condition in Theorem 6, we get the same bound of the
Erdős-Ko-Rado theorem for k-uniform intersecting families under the same condition for subsets of [n]
that are of size at least k and at most n− k.
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Erdős-Ko-Rado Theorem is a seminal result in extremal combinatorics and has been proved by
various methods (see a survey in [5]). There have been many results that have generalized EKR in
various ways over the decades. The aim of this paper is to give a generalization of the EKR Theorem
to non-uniform families with some extra conditions. Our proof is based on the method of linearly
independent multilinear polynomials.

Our paper is organized as follows. In Section 3, we will introduce our main tool, the method of
linearly independent multilinear polynomials. In Section 4, we will give the proof of our main result,
Theorem 6.

3. Polynomial Method

The method of linearly independent polynomials is one of the most powerful methods for
counting the number of sets in various combinatorial settings. In this method, we correspond
multilinear polynomials to the sets and then prove that these polynomials are linearly independent in
some space. In 1975, Ray-Chaudhuri and Wilson [6] obtained the following result by using the method
of linearly independent polynomials.

Theorem 7 (Ray-Chaudhuri and Wilson [6]). Let l1, l2, · · · , ls < n be nonnegative integers. If F is a
k-uniform family of subsets of [n] such that |A ∩ B| ∈ L = {l1, l2, · · · , ls} holds for every pair of distinct
subsets A, B ∈ F , then |F | ≤ (n

s) holds.

In 1981, Frankl and Wilson [7] obtained the following nonuniform version of the
Ray-Chaudhuri-Wilson Theorem using the polynomial method. Their proof is given underneath.

Theorem 8 (Frankl and Wilson [7]). Let l1, l2, · · · , ls < n be nonnegative integers. If F is a family of
subsets of [n] such that |A ∩ B| ∈ L = {l1, l2, · · · , ls} holds for every pair of distinct subsets A, B ∈ F ,
then |F | ≤ ∑s

k=0 (
n
k) holds.

Proof. Let x be the n-tuple of variables x1, x2, · · · , xn, where xi takes the values only 0 and 1. Then all
the polynomials we will work with have the relation x2

i = xi in their domain. Let F1, F2, · · · , Fm be the
distinct sets in F , listed in non-decreasing order according to their sizes. We define the characteristic
vector vi = (vi1 , vi2 , · · · , vin) of Fi such that vij = 1 if j ∈ Fi and vij = 0 if j 6∈ Fi. We consider the
following multilinear polynomial

fi(x) = ∏
l∈L, l<|Fi |

(vi · x− l)

where x = (x1, x2, · · · , xn).

Then we obtain that fi(vi) 6= 0 and fi(vj) = 0 for j < i. As the vectors vi are 0− 1 vectors,
we have an another multilinear polynomial gi(x) such that fi(x) = gi(x) holds for all x ∈ {0, 1}n

by substituting xk for the powers of xk, where k = 1, 2, · · · , n. Then it is easy to see that the
polynomials g1, g2, · · · , gm are linearly independent over R. Since the dimension of n-variable
multilinear polynomials of degree at most s is ∑s

k=0 (
n
k), we have

|F | ≤
s

∑
k=0

(
n
k

)
finishing the proof of Theorem 8.

In the same paper, Frankl and Wilson [7] obtained the following modular version of Theorem 7.
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Theorem 9 (Frankl and Wilson [7]). If F is a family of subsets of [n] such that |A ∩ B| ≡ l ∈ L (mod p)
holds for every pair of distinct subsets A, B ∈ F , then |F | ≤ ( n

|L|) holds.

In 1983, Deza, Frankl and Singhi [8] obtained the following modular version of Theorem 8.

Theorem 10 (Deza, Frankl and Singhi [8]). If F is a family of subsets of [n] such that |A∩ B| ≡ l ∈ L (mod p)
holds for every pair of distinct subsets A, B ∈ F and |A| 6≡ l (mod p) for every A ∈ F , then |F| ≤ ∑

|L|
i=0 (

n
i) holds.

In 1991, Alon, Babai, and Suzuki [9] gave another modular version of Theorem 8 by replacing the
condition of nonuniformity with the condition that the members of F have r different sizes as follows.
Their proof was also based on the polynomial method.

Theorem 11 (Alon-Babai-Suzuki [9]). Let K = {k1, k2, · · · , kr} and L = {l1, l2, · · · , ls} be two disjoint
subsets of {0, 1, · · · , p− 1}, where p is a prime, and letF be a family of subsets of [n] whose sizes modulo p are in
the set K, and |A∩ B| (mod p) ∈ L holds for every distinct two subsets A, B in F , then the largest size of such a
family F is (n

s) + ( n
s−1) + · · ·+ ( n

s−r+1) under the conditions r(s− r + 1) ≤ p− 1 and n ≥ s + max1≤i≤r ki.

In the same paper, Alon, Babai, and Suzuki [9] also conjectured that the statement of Theorem 11
remains true if the condition r(s− r+ 1) ≤ p− 1 is dropped. Recently Hwang and Kim [10] proved this
conjecture of Alon, Babai and Suzuki (1991), using the method of linearly independent polynomials.
This result is as follows.

Theorem 12 (Hwang and Kim [10]). Let K = {k1, k2, · · · , kr} and L = {l1, l2, · · · , ls} be two disjoint
subsets of {0, 1, · · · , p− 1}, where p is a prime, and let F be a family of subsets of [n] whose sizes modulo p are
in the set K, and |A ∩ B| (mod p) ∈ L for every distinct two subsets A, B in F , then the largest size of such a
family F is (n

s) + ( n
s−1) + · · ·+ ( n

s−r+1) under the only condition that n ≥ s + max1≤i≤r ki.

The method of linearly independent polynomials has also been used to prove many intersection
theorems about set families by Blokhuis [11], Chen and Liu [12], Furedi, Hwang, and Weichsel [13],
Liu and Yang [14], Qian and Ray-Chaudhuri [15], Ramanan [16], Snevily [17,18], Wang, Wei,
and Ge [19], and others.

4. Proof of the Main Result

In this section, we prove Theorem 6. As we have mentioned before, our proof is based on the
polynomial method. Let x be the n-tuple of variables x1, x2, · · · , xn, where xi takes the values only 0
and 1. Then all the polynomials we will work with have the relation x2

i = xi in their domain.

Proof of Theorem 6. The result is immediate if |F | = 1. Suppose |F | > 1. Let F1, F2, · · · , Ff be
the distinct sets in F , listed in non-decreasing order of size. We define the characteristic vector
vi = (vi1 , vi2 , · · · , vin) of Fi such that vij = 1 if j ∈ Fi and vij = 0 if j 6∈ Fi.

We consider the following family of multilinear polynomials

fi(x) =
k−1

∏
j=1

(vi · x− j)

where x = (x1, x2, · · · , xn).
Since |F1| ≤ |F2|, there exists some p ∈ F2 such that p 6∈ F1. Let G = {G1, G2, · · · , Gg} be the

family of subsets of [n] with the size at most k− 2, which is listed in non-decreasing order of size,
and not containing p. Next, we consider the second family of multilinear polynomials

gi(x) = (xp − 1) ∏
j∈Gi

xj
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where 1 ≤ i ≤ g. LetH = {H1, H2, · · · , Hh} be the family of subsets of [n] with the size at most k− 1,
which is listed in non-decreasing order of size, and containing p. Then, we consider our third and last
family of multilinear polynomials

hi(x) = ∏
|Hi |−1
j=0 (wi · x− j)− ∑l:p 6∈Fl

∏
|Hi |−1
j=0 (wi ·vc

l−j)

∏k−1
j=1 (v

c
l ·v

c
l−j)

∏k−1
j=1 (v

c
l · x− j)

−∑l:p∈Fl

∏
|Hi |−1
j=0 (wi ·vl−j)

∏k−1
j=1 (vl ·vl−j)

∏k−1
j=1 (vl · x− j)

where wi is the characteristic vector of Hi.
We claim that the functions fi(x), gi(x), and hi(x) taken together are linearly independent.

Assume that
f

∑
i=1

αi fi(x) +
g

∑
i=1

βigi(x) +
h

∑
i=1

γihi(x) = 0 (1)

We substitute the characteristic vector vs of Fs containing p into Equation (1). Because of the
(xp − 1) factor, we have

gi(vs) = 0 for all 1 ≤ i ≤ g.

Let vc
l be the characteristic vector of Fc

l . Next, let us consider hi(vs) :

hi(vs) = ∏
|Hi |−1
j=0 (wi · vs − j)−∑l:p 6∈Fl

∏
|Hi |−1
j=0 (wi ·vc

l−j)

∏k−1
j=1 (v

c
l ·v

c
l−j)

∏k−1
j=1 (v

c
l · vs − j)

−∑l:p∈Fl

∏
|Hi |−1
j=0 (wi ·vl−j)

∏k−1
j=1 (vl ·vl−j)

∏k−1
j=1 (vl · vs − j).

Since 1 ≤ |Fl ∩ Fs| ≤ k− 1, we have ∏k−1
j=1 (vl · vs − j) = 0 except when s = l. Since |Fi| ≥ k for all

i, we have

−∑l:p∈Fl

∏
|Hi |−1
j=0 (wi ·vl−j)

∏k−1
j=1 (vl ·vl−j)

∏k−1
j=1 (vl · vs − j) = −∏

|Hi |−1
j=0 (wi ·vs−j)

∏k−1
j=1 (vs ·vs−j)

∏k−1
j=1 (vs · vs − j)

= −∏
|Hi |−1
j=0 (wi · vs − j).

Since 1 ≤ |Fc
l ∩ Fs| ≤ k − 1 for s 6= l, we have ∏k−1

j=1 (v
c
l · vs − j) = ∏k−1

j=1 (|F
c
l ∩ Fs| − j) = 0.

Thus, we have

hi(vs) =
|Hi |−1

∏
j=0

(wi · vs − j)−
|Hi |−1

∏
j=0

(wi · vs − j) = 0 for all 1 ≤ i ≤ h.

Finally, we consider fi(vs). Since fs(vs) 6= 0 and 1 ≤ |Fi ∩ Fs| ≤ k− 1 for i 6= s, we get αs = 0
whenever p ∈ Fs.

Next, we substitute the characteristic vector vc
s of Fc

s into Equation (1), where p 6∈ Fs. Because of
the (xp − 1) factor, we have

gi(vc
s) = 0 for all 1 ≤ i ≤ g.

Next, let us consider hi(vc
s). Since 1 ≤ |Fc

l ∩ Fc
s | ≤ k− 1, we have ∏k−1

j=1 (v
c
l · v

c
s − j) = 0 except

when s = l. Since n− |Fi| ≥ k, we have

− ∑
l:p/∈Fl

∏
|Hi |−1
j=0 (wi · vc

l − j)

∏k−1
j=1 (v

c
l · v

c
l − j)

k−1

∏
j=1

(vc
l · v

c
s − j) = −

|Hi |−1

∏
j=0

(wi · vc
s − j).
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Since 1 ≤ |Fl ∩ Fc
s | ≤ k− 1 for s 6= l, we have ∏k−1

j=1 (vl · vc
s − j) = ∏k−1

j=1 (|Fl ∩ Fc
s | − j) = 0. Thus,

we have

hi(vc
s) =

|Hi |−1

∏
j=0

(wi · vc
s − j)−

|Hi |−1

∏
j=0

(wi · vc
s − j) = 0 for all 1 ≤ i ≤ h.

Finally we consider fi(vc
s). Since 1 ≤ |Fi ∩ Fc

s | ≤ k− 1, by the hypothesis fi(vc
s) is also 0 except for

fs(vc
s). Since fs(vc

s) 6= 0, we get αs = 0 whenever p 6∈ Fs.
So Equation (1) is reduced to :

g

∑
i=1

βigi(x) +
h

∑
i=1

γihi(x) = 0 (2)

Next, we substitute the characteristic vector ws of Hs in order of increasing size into Equation (2).
Now we note that p ∈ Hs. Because of the (xp − 1) factor, we have gi(ws) = 0 for all 1 ≤ i ≤ g.
Since the size of Hi is at most k − 1 for all i, we have 1 ≤ |Fc

l ∩ Hs| ≤ k − 1 for p ∈ Fc
l . Thus, the

factor ∏k−1
j=1 (v

c
l · ws − j) is 0. Similarly, the factor ∏k−1

j=1 (vl · ws − j) is 0 for p ∈ Fl . Thus, we have

hi(ws) = ∏
|Hi |−1
j=0 (wi · ws − j). Since hs(ws) 6= 0, and hi(ws) = 0 for i > s, we have ∑h

i=1 γihi(ws) =

∑s
i=1 γihi(ws).

Recall that we substitute the vector ws in order of increasing size. When we first plug w1 into
Equation (2), we have γ1h1(w1) = 0, and thus γ1 = 0. Next, we plug w2 into (2) after dropping γ1h1(w1)

term from (2). Then we have γ2h2(w2) = 0, and thus γ2 = 0. Similarly, we have γi = 0 for all i.
Thus, Equation (1) becomes

∑
i

βigi(x) = 0. (3)

Next, we substitute the characteristic vector ys of Gs in order of increasing size into Equation (3).
Thus, we have

gi(ys) = (ysp − 1) ∏
j∈Gi

ysj = − ∏
j∈Gi

ysj for all 1 ≤ i ≤ g.

Recall that we substitute the vector ys in order of increasing size. Please note that gi(0) is the empty
product, which is taken to be 1. When we first plug y1 into Equation (3), we have g1(y1) 6= 0 and
gi(y1) = 0 for all i > 1, and thus β1 = 0. Next, we plug y2 into (3) after dropping β1g1(x) term from (3).
Then we have g2(y2) 6= 0 and gi(y2) = 0 for all i > 2, and thus β2 = 0. Similarly, we have βi = 0 for all i.

This concludes that all the polynomials fi(x), gi(x), and hi(x) are linearly independent. We found
|F |+ |G|+ |H| linearly independent polynomials. All these polynomials are of degree less than or
equal to k− 1. The space of these multilinear polynomials has dimension ∑k−1

i=0 (n
i ). We have

|F |+ |G|+ |H| ≤
k−1

∑
i=0

(
n
i

)
.

Since |G| = ∑k−2
i=0 (n−1

i ) and |H| = ∑k−2
i=0 (n−1

i ), we have |F | + 2 ∑k−2
i=0 (n−1

i ) ≤ ∑k−1
i=0 (n

i ). This
gives us

|F | ≤
(

n− 1
k− 1

)
finishing the proof of Theorem 6.

5. Conclusions

We have answered the following question: when is it possible to get the same bound of the
Erdős-Ko-Rado theorem for uniform intersecting families in the non-uniform intersecting families?
Since the EKR-type bound for the non-uniform family of subsets of [n], which is (n−1

k−1) + (n−1
k−2) + · · ·+

(n−1
0 ), is much larger than (n−1

k−1), this question is interesting and deserves further study.



Symmetry 2020, 12, 640 7 of 8

Please note that if we can delete the condition (c) in Theorem 6, we can get the same bound of the
Erdős-Ko-Rado theorem for k-uniform intersecting families under the same condition for non-uniform
intersecting families of size at least k and at most n− k. Another intriguing question motivated by our
result is the problem of getting the same bound of Theorem 6 without the condition (c) or finding a
better bound for the non-uniform intersecting families than the previous results by the others.
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