Real Space Theory for Electron and Phonon Transport in Aperiodic Lattices via Renormalization
Abstract
:1. Introduction
2. Fibonacci Chains
3. Aperiodic Chains besides Fibonacci
4. Multidimensional Aperiodic Lattices
5. Vibrational Excitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
YB | Yottabytes |
RSRM | Real-space renormalization method |
CPA | Coherent potential approximation |
CPU | Central processing unit |
1D | One-dimensional |
2D | Two-dimensional |
3D | Three-dimensional |
DC | Direct current |
AC | Alternating current |
DOS | Density of states |
IDOS | Integrated density of states |
GF | Generalized Fibonacci |
TM | Thue–Morse |
PD | Period doubling |
NW | Nanowires |
IR | Infrared |
DNA | Deoxyribonucleic acid |
A | Adenine |
C | Cytosine |
G | Guanine |
T | Thymine |
References
- Chattopadhyay, D.; Queisser, H.J. Electron scattering by ionized impurities in semiconductors. Rev. Mod. Phys. 1981, 53, 745–768. [Google Scholar] [CrossRef]
- Maciá-Barber, E. Thermoelectric Materials: Advances and Applications; CRC Press: Boca Raton, FL, USA, 2015; p. 77. ISBN 978-981-4463-53-9. [Google Scholar]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Saunders College Pub.: Fort Worth, TX, USA, 1976; pp. 615–641. ISBN 0-03-083993-9. [Google Scholar]
- Elliott, R.J.; Krumhansl, J.A.; Leath, P.L. The theory and properties of randomly disordered crystals and related physical systems. Rev. Mod. Phys. 1974, 46, 465–543. [Google Scholar] [CrossRef]
- Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1954. [Google Scholar] [CrossRef] [Green Version]
- Janot, C. Quasicrystals: A Primer, 2nd ed.; Oxford University Press: Oxford, UK, 1994; pp. 223–234. ISBN 978-0-19-965740-7. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 23–42. ISBN 0-471-41526-X. [Google Scholar]
- Kadanoff, L.P. Scaling laws for Ising models near Tc. Physics 1966, 2, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.G. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 1971, 4, 3174–3183. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.G. Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B 1971, 4, 3184–3205. [Google Scholar] [CrossRef] [Green Version]
- Kramer, B.; MacKinon, A. Localization: Theory and experiment. Rep. Prog. Phys. 1993, 56, 1469–1564. [Google Scholar] [CrossRef]
- Economou, E.N. Green’s Functions in Quantum Physics, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 7–184. ISBN 978-3-540-28838-1. [Google Scholar]
- Oviedo-Roa, R.; Pérez, L.A.; Wang, C. AC conductivity of the transparent states in Fibonacci chains. Phys. Rev. B 2000, 62, 13805–13808. [Google Scholar] [CrossRef]
- Maciá Barber, E. Aperiodic Structures in Condensed Matter: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2009; pp. 132–153. ISBN 978-1-4200-6827-6. [Google Scholar]
- Posamentier, A.S.; Lehmann, I. The Fabulous Fibonacci Numbers; Prometheus Books: New York, NY, USA, 2007; p. 26. ISBN 978-1-59102-475-0. [Google Scholar]
- Dunlap, R.A. The Golden Ratio and Fibonacci Numbers; World Scientific Pub.: Singapore, 1997; pp. 35–49. ISBN 9810232640. [Google Scholar]
- Sánchez, V.; Wang, C. Application of renormalization and convolution methods to the Kubo-Greenwood formula in multidimensional Fibonacci systems. Phys. Rev. B 2004, 70, 144207. [Google Scholar] [CrossRef]
- Kohmoto, M.; Oono, Y. Cantor spectrum for an almost periodic Schrödinger equation and a dynamical map. Phys. Lett. A 1984, 102, 145–148. [Google Scholar] [CrossRef]
- Kohmoto, M.; Sutherland, B.; Tang, C. Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. Phys. Rev. B 1987, 35, 1020–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohmoto, M.; Banavar, J.R. Quasiperiodic lattice: Electronic properties, phonon properties, and diffusion. Phys. Rev. B 1986, 34, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Kohmoto, M. Global scaling properties of the spectrum for a quasiperiodic Schrodinger equation. Phys. Rev. B 1986, 34, 2041–2044. [Google Scholar] [CrossRef] [PubMed]
- Kohmoto, M. Localization problem and mapping of one-dimensional wave equations in random and quasiperiodic media. Phys. Rev. B 1986, 34, 5043–5047. [Google Scholar] [CrossRef]
- Sutherland, B.; Kohmoto, M. Resistance of a one-dimensional quasicrystal: Power-law growth. Phys. Rev. B 1987, 35, 5877–5886. [Google Scholar] [CrossRef]
- Niu, Q.; Nori, F. Renormalization-group study of one-dimensional quasiperiodic systems. Phys. Rev. Lett. 1986, 57, 2057–2060. [Google Scholar] [CrossRef]
- Zheng, W.M. Global scaling properties of the spectrum for the Fibonacci chains. Phys. Rev. A 1987, 35, 1467–1469. [Google Scholar] [CrossRef]
- Roman, H.E. Hierarchical structure of a one-dimensional quasiperiodic model. Phys. Rev. B 1988, 37, 1399–1401. [Google Scholar] [CrossRef]
- Villaseñor-González, P.; Mejía-Lira, F.; Morán-López, J.L. Renormalization group approach to the electronic spectrum of a Fibonacci chain. Solid State Commun. 1988, 66, 1127–1130. [Google Scholar] [CrossRef]
- Wang, C.; Barrio, R.A. Theory of the Raman response in Fibonacci superlattices. Phys. Rev. Lett. 1988, 61, 191–194. [Google Scholar] [CrossRef]
- Bajema, K.; Merlin, R. Raman scattering by acoustic phonons in Fibonacci GaAs-AlAs superlattices. Phys. Rev. B 1987, 36, 4555–4557. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Karmakar, S.N.; Moitra, R.K. Exact real-space renormalization-group approach for the local electronic Green’s functions on an infinite Fibonacci chain. Phys. Rev. B 1989, 39, 9730–9733. [Google Scholar] [CrossRef] [PubMed]
- Tsunetsugu, H.; Ueda, K. Ising spin system on the Fibonacci chain. Phys. Rev. B 1987, 36, 5493–5499. [Google Scholar] [CrossRef] [PubMed]
- Ashraff, J.A.; Stinchcombe, R.B. Nonuniversal critical dynamics on the Fibonacci-chain quasicrystal. Phys. Rev. B 1989, 40, 2278–2283. [Google Scholar] [CrossRef]
- Aldea, A.; Dulea, M. Hopping conduction on aperiodic chains. Phys. Rev. Lett. 1988, 60, 1672–1675. [Google Scholar] [CrossRef]
- Miller, A.; Abrahams, E. Impurity conduction at low concentrations. Phys. Rev. 1960, 120, 745–755. [Google Scholar] [CrossRef]
- López, J.C.; Naumis, G.; Aragón, J.L. Renormalization group of random Fibonacci chains. Phys. Rev. B 1993, 48, 12459–12464. [Google Scholar] [CrossRef]
- Barrio, R.A.; Wang, C. Electron Localization in Large Fibonacci Chains. In Quasicrystals and Incommensurate Structures in Condensed Matter; José Yacamán, M., Romeu, D., Castaño, V., Gómez, A., Eds.; World Scientific: Singapore, 1990; pp. 448–464. ISBN 981-02-0001-3. [Google Scholar]
- Capaz, R.B.; Koiller, B.; de Queiroz, S.L.A. Gap states and localization properties of one-dimensional Fibonacci quasicrystals. Phys. Rev. B 1990, 42, 6402–6407. [Google Scholar] [CrossRef]
- Liu, Y.; Sritrakool, W. Branching rules of the energy spectrum of one-dimensional quasicrystals. Phys. Rev. B 1991, 43, 1110–1116. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Karmakar, S.N.; Moitra, R.K. On the nature of eigenstates of quasiperiodic lattices in one dimension. Phys. Lett. A 1992, 168, 301–304. [Google Scholar] [CrossRef]
- Zhong, J.X.; You, J.Q.; Yan, J.R.; Yan, X.H. Local electronic properties of one-dimensional quasiperiodic systems. Phys. Rev. B 1991, 43, 13778–13781. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.X.; Yan, J.R.; You, J.Q.; Yan, X.H. Exact renormalization-group approach for the average Green functions of aperiodic lattices. Phys. Lett. A 1993, 177, 71–75. [Google Scholar] [CrossRef]
- Newman, M.E.J.; Stinchcombe, R.B. Hopping conductivity of the Fibonacci-chain quasicrystal. Phys. Rev. B 1991, 43, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A. AC-conductivity of aperiodic chains re-examined. Z. Phys. B 1993, 93, 127–131. [Google Scholar] [CrossRef]
- Piéchon, F.; Benakli, M.; Jagannathan, A. Analytical results for scaling properties of the spectrum of the Fibonacci chain. Phys. Rev. Lett. 1995, 74, 5248–5251. [Google Scholar] [CrossRef] [Green Version]
- Maciá, E.; Domínguez-Adame, F. Physical nature of critical wave functions in Fibonacci systems. Phys. Rev. Lett. 1996, 76, 2957–2960. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Karmakar, S.N. Electronic properties of quasiperiodic Fibonacci chain including second-neighbor hopping in the tight-binding model. Eur. Phys. J. B 1999, 11, 575–582. [Google Scholar] [CrossRef]
- Sánchez, V.; Pérez, L.A.; Oviedo-Roa, R.; Wang, C. Renormalization approach to the Kubo formula in Fibonacci systems. Phys. Rev. B 2001, 64, 174205. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, V.; Wang, C. Exact results of the Kubo conductivity in macroscopic Fibonacci systems: A renormalization approach. J. Alloys Compd. 2002, 342, 410–412. [Google Scholar] [CrossRef]
- Sánchez, V.; Wang, C. Electronic transport in quasiperiodic lattices. J. Phys. Soc. Jpn. 2003, 72, 177–178. [Google Scholar] [CrossRef] [Green Version]
- Walther, D.; Baltz, R.V. Frequency dependent conductivity of Fibonacci-chains. J. Low Temp. Phys. 2002, 126, 1211–1220. [Google Scholar] [CrossRef]
- Velhinho, M.T.; Pimentel, I.R. Lyapunov exponent for pure and random Fibonacci chains. Phys. Rev. B 2000, 61, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Oviedo-Roa, R.; Pérez, L.A.; Sánchez, V. Electrical conductivity and localization in quasiperiodic lattices. Ferroelectrics 2001, 250, 305–308. [Google Scholar] [CrossRef]
- Naumis, G.G. The stability of the renormalization group as a diagnostic tool for localization and its application to the Fibonacci case. J. Phys. Condens. Matter 2003, 15, 5969–5978. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, M.S.; Mauriz, P.W.; Albuquerque, E.L.; da Silva, E.F., Jr.; Freire, V.N. Electronic spectra of superlattice with impurities arranged according to a Fibonacci sequence. Appl. Surf. Sci. 2004, 234, 33–37. [Google Scholar] [CrossRef]
- Bakhtiari, M.R.; Vignolo, P.; Tosi, M.P. Coherent transport in linear arrays of quantum dots: The effects of period doubling and of quasi-periodicity. Physica E 2005, 28, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Maciá, E.; Rodríguez-Oliveros, R. Renormalization transformation of periodic and aperiodic lattices. Phys. Rev. B 2006, 74, 144202. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.; Chakrabarti, A. Wave propagation in a quasi-periodic waveguide network. Physica E 2005, 28, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiari, M.R.; Vignolo, P.; Tosi, M.P. Theory of coherent transport by an ultra-cold atomic Fermi gas through linear arrays of potential wells. Physica E 2006, 33, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Maciá, E. Clustering resonance effects in the electronic energy spectrum of tridiagonal Fibonacci quasicrystals. Phys. Status Solidi B 2017, 254, 1700078. [Google Scholar] [CrossRef]
- Hida, K. Quasiperiodic Hubbard Chains. Phys. Rev. Lett. 2001, 86, 1331–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arredondo, Y.; Navarro, O. Electron pairing in one-dimensional quasicrystals. Solid State Commun. 2010, 150, 1313–1316. [Google Scholar] [CrossRef] [Green Version]
- Hida, K. New universality class in spin-one-half Fibonacci Heisenberg chains. Phys. Rev. Lett. 2004, 93, 037205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassels, J.W.S. An Introduction to Diophantine Approximation; Cambridge University Press: Cambridge, UK, 1957; p. 133. ISBN 978-0521045872. [Google Scholar]
- Luck, J.M.; Godreche, C.; Janner, A.; Janssen, T. The nature of the atomic surfaces of quasiperiodic self-similar structures. J. Phys. A Math. Gen. 1993, 26, 1951–1999. [Google Scholar] [CrossRef]
- Maciá, E. Exploiting aperiodic designs in nanophotonic devices. Rep. Prog. Phys. 2012, 75, 036502. [Google Scholar] [CrossRef] [PubMed]
- Gumbs, G.; Ali, M.K. Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices. Phys. Rev. Lett. 1988, 60, 1081–1084. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Karmakar, S.N. Renormalization-group method for exact Green’s functions of self-similar lattices: Application to generalized Fibonacci chains. Phys. Rev. B 1991, 44, 896–899. [Google Scholar] [CrossRef]
- Zhong, J.X.; Yan, J.R.; You, J.Q.; Yan, X.H.; Mei, Y.P. Electronic properties of one-dimensional quasiperiodic lattices: Green’s function renormalization group approach. Z. Phys. B Condens. Matter 1993, 91, 127–133. [Google Scholar] [CrossRef]
- Zhong, J.X.; Yan, J.R.; You, J.Q. Renormalization-group approach to the local Green functions of a family of generalized Fibonacci lattices. J. Phys. A Math. Gen. 1991, 24, L949–L954. [Google Scholar] [CrossRef]
- Yan, X.H.; Zhong, J.X.; Yan, J.R.; You, J.Q. Renormalization group of generalized Fibonacci lattices. Phys. Rev. B 1992, 46, 6071–6079. [Google Scholar] [CrossRef]
- Yan, X.H.; You, J.Q.; Yan, J.R.; Zhong, J.X. Renormalization Group on the Aperiodic Hamiltonian. Chin. Phys. Lett. 1992, 9, 623–625. [Google Scholar]
- Oh, G.Y.; Ryu, C.S.; Lee, M.H. Clustering properties of energy spectra for one-dimensional generalized Fibonacci lattices. Phys. Rev. B 1993, 47, 6122–6125. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.X.; Yan, J.R.; You, J.Q. Exact Green’s functions of generalized Fibonacci lattices. J. Non Cryst. Solids 1993, 153, 439–442. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Y.; Zhou, P.; Sritrakool, W. Perfect self-similarity of energy spectra and gap-labeling properties in one-dimensional Fibonacci-class quasilattices. Phys. Rev. B 1997, 55, 2882–2889. [Google Scholar] [CrossRef] [Green Version]
- Walther, D.; Baltz, R.V. Path renormalization of quasiperiodic generalized Fibonacci chains. Phys. Rev. B 1997, 55, 8852–8866. [Google Scholar] [CrossRef]
- Chakrabarti, A. The unusual electronic spectrum of an infinite quasiperiodic chain: Extended signature of all eigenstates. J. Phys. Condens. Matter 1994, 6, 2015–2024. [Google Scholar] [CrossRef]
- Barghathi, H.; Nozadze, D.; Vojta, T. Contact process on generalized Fibonacci chains: Infinite-modulation criticality and double-log periodic oscillations. Phys. Rev. E 2014, 89, 012112. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Ramírez, C.; Sánchez, F.; Sánchez, V. Ballistic conduction in macroscopic non-periodic lattices. Phys. Status Solidi B 2015, 252, 1370–1381. [Google Scholar] [CrossRef]
- Sánchez, F.; Sánchez, V.; Wang, C. Renormalization approach to the electronic localization and transport in macroscopic generalized Fibonacci lattices. J. Non Cryst. Solids 2016, 450, 194–208. [Google Scholar] [CrossRef]
- Maciá, E. Spectral classification of one-dimensional binary aperiodic crystals: An algebraic approach. Ann. Phys. 2017, 529, 1700079. [Google Scholar] [CrossRef]
- Maciá, E. The role of aperiodic order in science and technology. Rep. Prog. Phys. 2006, 69, 397–441. [Google Scholar] [CrossRef]
- Qin, M.-G.; Ma, H.-R.; Tsai, C.-H. A renormalisation analysis of the one-dimensional Thue-Morse aperiodic chain. J. Phys. Condens. Matter 1990, 2, 1059–1072. [Google Scholar] [CrossRef]
- Zhong, J.X.; You, J.Q.; Yan, J.R. The exact Green function of a one-dimensional Thue-Morse lattice. J. Phys. Condens. Matter 1992, 4, 5959–5965. [Google Scholar] [CrossRef]
- Ghosh, A.; Karmakar, S.N. Trace map of a general aperiodic Thue-Morse chain: Electronic properties. Phys. Rev. B 1998, 58, 2586–2590. [Google Scholar] [CrossRef]
- Cheng, S.-F.; Jin, G.-J. Trace map and eigenstates of a Thue-Morse chain in a general model. Phys. Rev. B 2002, 65, 134206. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, A.; Karmakar, S.N.; Moitra, R.K. Role of a new type of correlated disorder in extended electronic states in the Thue-Morse lattice. Phys. Rev. Lett. 1995, 74, 1403–1406. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Chakrabarti, A. Role of an invariant in the existence of delocalized electronic states in generalized models of a Thue-Morse aperiodic chain. Phys. Rev. B 2001, 63, 132201. [Google Scholar] [CrossRef]
- Maciá, E.; Domínguez-Adame, F. Exciton optical absorption in self-similar aperiodic lattices. Phys. Rev. B 1994, 50, 16856–16860. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Tian, D.-C.; Wang, L. Renormalization group approach to the random period doubling lattice. Phys. Lett. A 1995, 207, 293–298. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, D.-C. Spectral properties of the period-doubling lattice: Exact renormalization group study. Z. Phys. B 1996, 100, 629–633. [Google Scholar] [CrossRef]
- Lin, Z.; Kong, X.; Yang, Z.R. Critical behavior of the Gaussian model on a diamond-type hierarchical lattice with periodic and aperiodic interactions. Phys. A 1999, 271, 118–124. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, X.; Han, H.; Cheng, B.; Luan, C. Spectral structure for a class of one-dimensional three-tile quasilattices. Phys. Rev. B 1991, 43, 13240–13245. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Wang, S.; Liu, Y.; Zheng, D.; Zou, N. Electronic properties of a one-dimensional three-tile quasilattice. Phys. Rev. B 1993, 47, 5653–5659. [Google Scholar] [CrossRef] [PubMed]
- Maciá, E. On the nature of electronic wave functions in one-dimensional self-similar and quasiperiodic systems. ISRN Condens. Matter Phys. 2014, 2014, 165943. [Google Scholar] [CrossRef] [Green Version]
- Miroshnichenko, A.E.; Flach, S.; Kivshar, Y.S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 2010, 82, 2257–2298. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; González, J.E.; Sánchez, V. Enhancement of the thermoelectric figure-of-merit in nanowire superlattices. Mater. Res. Soc. Symp. Proc. 2015, 1735. [Google Scholar] [CrossRef]
- Orellana, P.A.; Domínguez-Adame, F.; Gómez, I.; Ladrón de Guevara, M.L. Transport through a quantum wire with a side quantum-dot array. Phys. Rev. B 2003, 67, 085321. [Google Scholar] [CrossRef] [Green Version]
- Miroshnichenko, A.E.; Kivshar, Y.S. Engineering Fano resonances in discrete arrays. Phys. Rev. E 2005, 72, 056611. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, A. Electronic transmission in a model quantum wire with side-coupled quasiperiodic chains: Fano resonance and related issues. Phys. Rev. B 2006, 74, 205315. [Google Scholar] [CrossRef] [Green Version]
- Farchioni, R.; Grosso, G.; Parravicini, G.P. Quenching of the transmittivity of a one-dimensional binary random dimer model through side-attached atoms. Phys. Rev. B 2012, 85, 165115. [Google Scholar] [CrossRef]
- Mardaani, M.; Rabani, H. A solvable model for electronic transport of a nanowire in the presence of effective impurities. Superlattices Microstruct. 2013, 59, 155–162. [Google Scholar] [CrossRef]
- Pal, B. Absolutely continuous energy bands and extended electronic states in an aperiodic comb-shaped nanostructure. Phys. Status Solidi B 2014, 251, 1401–1407. [Google Scholar] [CrossRef] [Green Version]
- Nandy, A.; Pal, B.; Chakrabarti, A. Tight-binding chains with off-diagonal disorder: Bands of extended electronic states induced by minimal quasi-one-dimensionality. EPL 2016, 115, 37004. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, A. Fano resonance in discrete lattice models: Controlling lineshapes with impurities. Phys. Lett. A 2007, 366, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Chakrabarti, A. Electronic transmission in quasiperiodic serial stub structures. J. Phys. Condens. Matter 2004, 16, 313–323. [Google Scholar] [CrossRef]
- Nomata, A.; Horie, S. Self-similarity appearance conditions for electronic transmission probability and Landauer resistance in a Fibonacci array of T stubs. Phys. Rev. B 2007, 76, 235113. [Google Scholar] [CrossRef]
- Ramírez, C.; Sánchez, V. Kubo conductivity of macroscopic systems with Fano defects for periodic and quasiperiodic cases by means of renormalization methods in real space. Phys. Status Solidi A 2013, 210, 2431–2438. [Google Scholar] [CrossRef]
- Sánchez, V.; Wang, C. Resonant AC conducting spectra in quasiperiodic systems. Int. J. Comput. Mater. Sci. Eng. 2012, 1, 1250003. [Google Scholar] [CrossRef]
- Sánchez, V.; Wang, C. Improving the ballistic AC conductivity through quantum resonance in branched nanowires. Philos. Mag. 2015, 95, 326–333. [Google Scholar] [CrossRef]
- Lambert, C.J. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev. 2015, 44, 875–888. [Google Scholar] [CrossRef]
- Su, T.A.; Neupane, M.; Steigerwald, M.L.; Venkataraman, L.; Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 2016, 1, 16002. [Google Scholar] [CrossRef]
- Nomata, A.; Horie, S. Fractal feature of localized electronic states in Fibonacci arrays of Aharonov-Bohm rings. Phys. Rev. B 2007, 75, 115130. [Google Scholar] [CrossRef]
- Sil, S.; Maiti, S.K.; Chakrabarti, A. Metal-insulator transition in an aperiodic ladder network: An exact result. Phys. Rev. Lett. 2008, 101, 076803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabarti, A. Electronic transmission in bent quantum wires. Physica E 2010, 42, 1963–1967. [Google Scholar] [CrossRef] [Green Version]
- Farchioni, R.; Grosso, G.; Parravicini, G.P. Electronic transmission through a ladder with a single side-attached impurity. Eur. Phys. J. B 2011, 84, 227–233. [Google Scholar] [CrossRef]
- Pal, B.; Maiti, S.K.; Chakrabarti, A. Complete absence of localization in a family of disordered lattices. EPL 2013, 102, 17004. [Google Scholar] [CrossRef] [Green Version]
- Dutta, P.; Maiti, S.K.; Karmakar, S.N. A renormalization group study of persistent current in a quasiperiodic ring. Phys. Lett. A 2014, 378, 1388–1391. [Google Scholar] [CrossRef] [Green Version]
- Pal, B.; Chakrabarti, A. Engineering bands of extended electronic states in a class of topologically disordered and quasiperiodic lattices. Phys. Lett. A 2014, 378, 2782–2789. [Google Scholar] [CrossRef] [Green Version]
- Pal, B.; Chakrabarti, A. Absolutely continuous energy bands in the electronic spectrum of quasiperiodic ladder networks. Physica E 2014, 60, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Bravi, M.; Farchioni, R.; Grosso, G.; Parravicini, G.P. Riccati equation for simulation of leads in quantum transport. Phys. Rev. B 2014, 90, 155445. [Google Scholar] [CrossRef]
- Nandy, A.; Chakrabarti, A. Engineering flat electronic bands in quasiperiodic and fractal loop geometries. Phys. Lett. A 2015, 379, 2876–2882. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Nandy, A. Spectral engineering and tunable thermoelectric behavior in a quasiperiodic ladder network. Phys. Lett. A 2019, 383, 570–577. [Google Scholar] [CrossRef]
- Mukherjee, A.; Chakrabarti, A.; Römer, R.A. Flux-driven and geometry-controlled spin filtering for arbitrary spins in aperiodic quantum networks. Phys. Rev. B 2018, 98, 075415. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Römer, R.A.; Chakrabarti, A. Spin-selective Aharonov-Casher caging in a topological quantum network. Phys. Rev. B 2019, 100, 161108. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, A. Electronic states and charge transport in a class of low dimensional structured systems. Physica E 2019, 114, 113616. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, P.; Li, X.; Tao, N. Direct conductance measurement of single DNA molecules in aqueous solution. Nano Lett. 2004, 4, 1105–1108. [Google Scholar] [CrossRef]
- Taniguchi, M.; Kawai, T. DNA electronics. Physica E 2006, 33, 1–12. [Google Scholar] [CrossRef]
- Sponer, J.; Leszczynski, J.; Hobza, P. Structures and energies of hydrogen-bonded DNA base pairs: A nonempirical study with inclusion of electron correlation. J. Phys. Chem. 1996, 100, 1965–1974. [Google Scholar] [CrossRef]
- de Pablo, P.J.; Moreno-Herrero, F.; Colchero, J.; Gómez Herrero, J.; Herrero, P.; Baró, A.M.; Ordejón, P.; Soler, J.M.; Artacho, E. Absence of DC-conductivity in λ-DNA. Phys. Rev. Lett. 2000, 85, 4992–4995. [Google Scholar] [CrossRef]
- Ladik, J.; Biczó, G.; Elek, G. Theoretical estimation of the conductivity of different periodic DNA models. J. Chem. Phys. 1966, 44, 483–485. [Google Scholar] [CrossRef]
- Ladik, J. Energy bands in DNA. Int. J. Quantum Chem. 1970, 5, 307–317. [Google Scholar] [CrossRef]
- Maciá, E.; Roche, S. Backbone-induced effects in the charge transport efficiency of synthetic DNA molecules. Nanotechnology 2006, 17, 3002–3007. [Google Scholar] [CrossRef]
- Maciá, E. Electronic structure and transport properties of double-stranded Fibonacci DNA. Phys. Rev. B 2006, 74, 245105. [Google Scholar] [CrossRef] [Green Version]
- Ketabi, S.A.; Khouzestani, H.F. Electronic transport through dsDNA based junction: A Fibonacci model. Iran. J. Phys. Res. 2014, 14, 67–72. [Google Scholar]
- Joe, Y.S.; Lee, S.H.; Hedin, E.R. Electron transport through asymmetric DNA molecules. Phys. Lett. A 2010, 374, 2367–2373. [Google Scholar] [CrossRef]
- Maciá, E. Electrical conductance in duplex DNA: Helical effects and low-frequency vibrational coupling. Phys. Rev. B 2007, 76, 245123. [Google Scholar] [CrossRef] [Green Version]
- Maciá, E. π-π orbital resonance in twisting duplex DNA: Dynamical phyllotaxis and electronic structure effects. Phys. Rev. B 2009, 80, 125102. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, M.L.; Ourique, G.S.; Fulco, U.L.; Albuquerque, E.L.; de Moura, F.A.B.F.; Lyra, M.L. Charge transport properties of a twisted DNA molecule: A renormalization approach. Chem. Phys. 2016, 478, 48–54. [Google Scholar] [CrossRef]
- Maciá, E. DNA-based thermoelectric devices: A theoretical prospective. Phys. Rev. B 2007, 75, 035130. [Google Scholar] [CrossRef] [Green Version]
- de Moura, F.A.B.F.; Lyra, M.L.; Albuquerque, E.L. Electronic transport in poly(CG) and poly(CT) DNA segments with diluted base pairing. J. Phys. Condens. Matter 2008, 20, 075109. [Google Scholar] [CrossRef]
- Tornow, S.; Bulla, R.; Anders, F.B.; Zwicknagl, G. Multiple-charge transfer and trapping in DNA dimers. Phys. Rev. B 2010, 82, 195106. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.-S.; Xu, H.; Wang, H.-Y.; Liu, X.-L. Renormalization scheme to the charge transfer efficiency of single-strand DNA with long range correlated disorder. Mod. Phys. Lett. B 2009, 23, 951–962. [Google Scholar] [CrossRef]
- Rabani, H.; Mardaani, M. Exact analytical results on electronic transport of conjugated polymer junctions: Renormalization method. Solid State Commun. 2012, 152, 235–239. [Google Scholar] [CrossRef]
- Liu, X.-L.; Xu, H.; Ma, S.-S.; Deng, C.-S.; Li, M.-J. Renormalization-group results of electron transport in DNA molecules with off-diagonal correlation. Physica B 2007, 392, 107–111. [Google Scholar] [CrossRef]
- Wang, L.; Qin, Z.-J. Isolate extended state in the DNA molecular transistor with surface interaction. Physica B 2016, 482, 1–7. [Google Scholar] [CrossRef]
- Mardaani, M.; Rabani, H. An analytical model for magnetoconductance of poly(p-phenylene)-like molecular wires in the tight-binding approach. J. Mag. Mag. Mater. 2013, 331, 28–32. [Google Scholar] [CrossRef]
- Sarmento, R.G.; Fulco, U.L.; Albuquerque, E.L.; Caetano, E.W.S.; Freire, V.N. A renormalization approach to describe charge transport in quasiperiodic dangling backbone ladder (DBL)-DNA molecules. Phys. Lett. A 2011, 375, 3993–3996. [Google Scholar] [CrossRef] [Green Version]
- Ojeda, J.H.; Pacheco, M.; Rosales, L.; Orellana, P.A. Current and Shot noise in DNA chains. Org. Electron. 2012, 13, 1420–1429. [Google Scholar] [CrossRef]
- Pal, T.; Sadhukhan, P.; Bhattacharjee, S.M. Renormalization group limit cycle for three-stranded DNA. Phys. Rev. Lett. 2013, 110, 028105. [Google Scholar] [CrossRef]
- Maji, J.; Bhattacharjee, S.M. Efimov effect of triple-stranded DNA: Real-space renormalization group and zeros of the partition function. Phys. Rev. E 2012, 86, 041147. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, E.L.; Fulco, U.L.; Freire, V.N.; Caetano, E.W.S.; Lyra, M.L.; de Moura, F.A.B.F. DNA-based nanobiostructured devices: The role of quasiperiodicity and correlation effects. Phys. Rep. 2014, 535, 139–209. [Google Scholar] [CrossRef]
- Lambropoulos, K.; Simserides, C. Tight-binding modeling of nucleic acid sequences: Interplay between various types of order or disorder and charge transport. Symmetry 2019, 11, 968. [Google Scholar] [CrossRef] [Green Version]
- Lifshitz, R. The square Fibonacci tiling. J. Alloys Compd. 2002, 342, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-B.; Liu, Y.-Y. Electronic energy spectrum structure of the two-dimensional Fibonacci quasilattices with three kinds of atoms and one kind of bond length. Acta Phys. Sin. 1995, 4, 510–522. [Google Scholar]
- Ma, H.-R.; Tsai, C.-H. On the energy spectra of one-dimensional quasi-periodic systems. J. Phys. C Solid State Phys. 1988, 21, 4311–4324. [Google Scholar] [CrossRef]
- Merlin, R.; Bajema, K.; Clarke, R.; Juang, F.-Y.; Bhattacharya, P.K. Quasiperiodic GaAs-AIAs heterostructures. Phys. Rev. Lett. 1985, 55, 1768–1770. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Y.-Y.; Cheng, B.; Zheng, D. Spectral structure of two-dimensional Fibonacci quasilattices. Phys. Rev. B 1991, 43, 10808–10814. [Google Scholar] [CrossRef]
- Yang, X.-B.; Liu, Y.-Y. Splitting rules for spectra of two-dimensional Fibonacci quasilattices. Phys. Rev. B 1997, 56, 8054–8059. [Google Scholar] [CrossRef]
- Yang, X.-B.; Xing, D. Splitting rules for the electronic spectra of two-dimensional Fibonacci-class quasicrystals with one kind of atom and two bond lengths. Phys. Rev. B 2002, 65, 134205. [Google Scholar] [CrossRef] [Green Version]
- Ashraff, J.A.; Luck, J.-M.; Stinchcombe, R.B. Dynamical properties of two-dimensional quasicrystals. Phys. Rev. B 1990, 41, 4314–4329. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Y.-Y. Renormalization-group approach for the local density of states of two-dimensional Fibonacci quasilattices. Phys. Rev. B 1993, 47, 3026–3030. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, V.; Wang, C. Kubo conductivity in two-dimensional Fibonacci lattices. J. Non Cryst. Solids 2003, 329, 151–154. [Google Scholar] [CrossRef]
- Sánchez, V.; Wang, C. Convolution and renormalization techniques applied to the Kubo conductivity in quasiperiodic systems. J. Non Cryst. Solids 2004, 345, 518–522. [Google Scholar] [CrossRef]
- Wang, C.; Sánchez, V.; Salazar, F. Fractal quantization of the electrical conductance in quasiperiodic systems. Ferroelectrics 2004, 305, 261–264. [Google Scholar] [CrossRef]
- Sánchez, V.; Wang, C. Electronic transport in multidimensional Fibonacci lattices. Philos. Mag. 2006, 86, 765–771. [Google Scholar] [CrossRef]
- Sánchez, V.; Wang, C. Renormalization-convolution approach to the electronic transport in two-dimensional aperiodic lattices. Surf. Sci. 2006, 600, 3898–3900. [Google Scholar] [CrossRef]
- Sánchez, V.; Wang, C. A real-space renormalization approach to the Kubo–Greenwood formula in mirror Fibonacci systems. J. Phys. A Math. Gen. 2006, 39, 8173–8182. [Google Scholar] [CrossRef]
- Sánchez, V.; Sánchez, F.; Ramírez, C.; Wang, C. Non-perturbative analysis of impurity effects on the Kubo conductivity of nano to macroscopic structures. MRS Adv. 2016, 1, 1779–1784. [Google Scholar] [CrossRef]
- Sánchez, V. Renormalization approach to the electrical conductivity of quasiperiodic systems with defects. Comput. Mater. Sci. 2008, 44, 32–35. [Google Scholar] [CrossRef]
- Sánchez, V.; Ramírez, C.; Sánchez, F.; Wang, C. Non-perturbative study of impurity effects on the Kubo conductivity in macroscopic periodic and quasiperiodic lattices. Physica B 2014, 449, 121–128. [Google Scholar] [CrossRef]
- Kohmoto, M.; Sutherland, B. Electronic states on a Penrose lattice. Phys. Rev. Lett. 1986, 56, 2740–2743. [Google Scholar] [CrossRef] [PubMed]
- Kohmoto, M.; Sutherland, B. Electronic and vibrational modes on a Penrose lattice: Localized states and band structure. Phys. Rev. B 1986, 34, 3849–3853. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Barrio, R.A. The electronic band structure of Penrose lattices: A renormalization approach. In Surface Science; Ponce, F.A., Cardona, M., Eds.; Springer Proceedings in Physics: Berlin/Heidelberg, Germany, 1991; Volume 62, pp. 67–70. ISBN 978-3-642-76378-6. [Google Scholar]
- Barrio, R.A.; Wang, C. Some physical inferences from the quasicrystalline topology of Penrose lattices. J. Non Cryst. Solids 1993, 153, 375–379. [Google Scholar] [CrossRef]
- Naumis, G.G.; Barrio, R.A.; Wang, C. Effects of frustration and localization of states in the Penrose lattice. Phys. Rev. B 1994, 50, 9834–9842. [Google Scholar] [CrossRef]
- You, J.Q.; Yan, J.R.; Zhong, J.X.; Yan, X.H. Local electronic properties of two-dimensional Penrose tilings: A renormalization-group approach. Phys. Rev. B 1992, 45, 7690–7696. [Google Scholar] [CrossRef]
- You, J.Q.; Nori, F. The real-space renormalization group and generating function for Penrose lattices. J. Phys. Condens. Matter 1993, 5, 9431–9438. [Google Scholar] [CrossRef] [Green Version]
- Aoyama, H.; Odagaki, T. Bond percolation in two-dimensional quasi-lattices. J. Phys. A Math. Gen. 1987, 20, 4985–4993. [Google Scholar] [CrossRef]
- Tang, L.-H.; Jaric, M.V. Equilibrium quasicrystal phase of a Penrose tiling model. Phys. Rev. B 1990, 41, 4524–4546. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, Z.-H.; Tian, D.-C. Real-space renormalization group approach to the Potts model on the two-dimensional Penrose tiling. Phys. A 1999, 265, 547–556. [Google Scholar] [CrossRef]
- Macé, N.; Jagannathan, A.; Kalugin, P.; Mosseri, R.; Piéchon, F. Critical eigenstates and their properties in one- and two-dimensional quasicrystals. Phys. Rev. B 2017, 96, 045138. [Google Scholar] [CrossRef] [Green Version]
- Takemori, N.; Koga, A. Local electron correlations in a two-dimensional Hubbard model on the Penrose lattice. J. Phys. Soc. Jpn. 2015, 84, 023701. [Google Scholar] [CrossRef]
- Takemori, N.; Koga, A. DMFT study of the local correlation effects in quasi-periodic system. J. Phys. Conf. Ser. 2015, 592, 012038. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, F.; Sánchez, V.; Wang, C. Ballistic transport in aperiodic Labyrinth tiling proven through a new convolution theorem. Eur. Phys. J. B 2018, 91, 132. [Google Scholar] [CrossRef]
- Sire, C.; Mosseri, R.; Sadoc, J.-F. Geometric study of a 2D tiling related to the octagonal quasiperiodic tiling. J. Phys. Fr. 1989, 50, 3463–3476. [Google Scholar] [CrossRef]
- Sire, C. Electronic spectrum of a 2D quasi-crystal related to the octagonal quasi-periodic tiling. Europhys. Lett. 1989, 10, 483–488. [Google Scholar] [CrossRef]
- Takahashi, Y. Quantum and spectral properties of the Labyrinth model. J. Math. Phys. 2016, 57, 063506. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y. Products of two Cantor sets. Nonlinearity 2017, 30, 2114–2137. [Google Scholar] [CrossRef] [Green Version]
- Thiem, S.; Schreiber, M. Renormalization group approach for the wave packet dynamics in golden-mean and silver-mean labyrinth tilings. Phys. Rev. B 2012, 85, 224205. [Google Scholar] [CrossRef] [Green Version]
- Thiem, S.; Schreiber, M. Wavefunctions, quantum diffusion, and scaling exponents in golden-mean quasiperiodic tilings. J. Phys. Condens. Matter 2013, 25, 075503. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.; Adrados, J.P.; Aragón, J.L.; Cobo, P.; Tehuacanero, S. Quasiperiodic Bloch-like states in a surface-wave experiment. Phys. Rev. Lett. 2003, 90, 114501. [Google Scholar] [CrossRef] [Green Version]
- Callaway, J. Quantum Theory of Solid State; Academic Press: New York, NY, USA, 1974; pp. 19–24. ISBN 0-12-155201-2. [Google Scholar]
- Alfaro, P.; Cisneros, R.; Bizarro, M.; Cruz-Irisson, M.; Wang, C. Raman scattering by confined optical phonons in Si and Ge nanostructures. Nanoscale 2011, 3, 1246–1251. [Google Scholar] [CrossRef] [PubMed]
- Atkins, P.; de Paula, J. Physical Chemistry, 8th ed.; W. H. Freeman and Co.: New York, NY, USA, 2006; pp. 460–468. ISBN 0-7167-8759-8. [Google Scholar]
- Quilichini, M.; Janssen, T. Phonon excitations in quasicrystals. Rev. Mod. Phys. 1997, 69, 277–314. [Google Scholar] [CrossRef] [Green Version]
- Maciá, E. Thermal conductivity and critical modes in one-dimensional Fibonacci quasicrystals. Mater. Sci. Eng. 2000, 294, 719–722. [Google Scholar] [CrossRef]
- Chen, B.; Gong, C.-D. The properties of one-dimensional quasiperiodic lattice’s phonon spectrum. Z. Phys. B Condens. Matter 1987, 69, 103–109. [Google Scholar] [CrossRef]
- You, J.Q.; Yang, Q.B.; Yan, J.R. Phonon properties of a class of one-dimensional quasiperiodic systems. Phys. Rev. B 1994, 41, 7491–7496. [Google Scholar] [CrossRef]
- Zhong, J.X.; Yan, J.R.; Yan, X.H.; You, J.Q. Local phonon properties of the Fibonacci-chain quasicrystal. J. Phys. Condens. Matter 1991, 3, 5685–5691. [Google Scholar] [CrossRef]
- Yan, X.H.; Yan, J.R.; Zhong, J.X.; You, J.Q.; Mei, Y.P. An exact renormalization-group approach for local phonon properties of single-atom and double-atom generalized Fibonacci systems. Z. Phys. B 1993, 91, 467–474. [Google Scholar] [CrossRef]
- Maciá, E. Thermal conductivity of one-dimensional Fibonacci quasicrystals. Phys. Rev. B 2000, 61, 6645–6653. [Google Scholar] [CrossRef] [Green Version]
- Gumbs, G.; Dubey, G.S.; Salman, A.; Mahmoud, B.S.; Huang, D. Statistical and transport properties of quasiperiodic layered structures: Thue-Morse and Fibonacci. Phys. Rev. B 1995, 52, 210–219. [Google Scholar] [CrossRef]
- Ghosh, A.; Karmakar, S.N. Vibrational properties of a general aperiodic Thue-Morse lattice: Role of the pseudoinvariant of the trace map. Phys. Rev. B 2000, 61, 1051–1058. [Google Scholar] [CrossRef]
- Kroon, L.; Riklund, R. Renormalization of aperiodic model lattices: Spectral properties. J. Phys. A Math. Gen. 2003, 36, 4519–4532. [Google Scholar] [CrossRef]
- Ghosh, A. Dynamical properties of three component Fibonacci quasicrystal. Eur. Phys. J. B 2001, 21, 45–51. [Google Scholar] [CrossRef]
- Kono, K.; Nakada, S. Resonant transmission and velocity renormalization of third sound in one-dimensional random lattices. Phys. Rev. Lett. 1992, 69, 1185–1188. [Google Scholar] [CrossRef] [PubMed]
- Springer, K.N.; Van Harlingen, D.J. Resistive transition and magnetic field response of a Penrose-tile array of weakly coupled superconductor islands. Phys. Rev. B 1987, 36, 7273–7276. [Google Scholar] [CrossRef]
- He, S.; Maynard, J.D. Eigenvalue spectrum, density of states, and eigenfunctions in a two-dimensional quasicrystal. Phys. Rev. Lett. 1989, 62, 1888–1891. [Google Scholar] [CrossRef]
- Wang, C.; Fuentes, R.; Navarro, O.; Barrio, R.A.; Barrera, R.G. Wave behavior in anharmonic Penrose lattices. J. Non Cryst. Solids 1993, 153, 586–590. [Google Scholar] [CrossRef]
- González, J.E.; Cruz-Irisson, M.; Sánchez, V.; Wang, C. Thermoelectric transport in poly(G)-poly(C) double chains. J. Phys. Chem. Solids 2020, 136, 109136. [Google Scholar] [CrossRef]
- Wang, C.; Salazar, F.; Sánchez, V. Renormalization plus convolution method for atomic-scale modeling of electrical and thermal transport in nanowires. Nano Lett. 2008, 8, 4205–4209. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Xu, C.-H.; Xiong, S.-J. Phonon transmission and thermal conductance in Fibonacci wire at low temperature. Chin. Phys. Lett. 2007, 24, 1017–1020. [Google Scholar]
- Andrews, S.C.; Fardy, M.A.; Moore, M.C.; Aloni, S.; Zhang, M.; Radmilovic, V.; Yang, P. Atomic-level control of the thermoelectric properties in polytypoid nanowires. Chem. Sci. 2011, 2, 706–714. [Google Scholar] [CrossRef]
- González, J.E.; Sánchez, V.; Wang, C. Thermoelectricity in periodic and quasiperiodically segmented nanobelts and nanowires. MRS Adv. 2016, 1, 3953–3958. [Google Scholar] [CrossRef]
- González, J.E.; Sánchez, V.; Wang, C. Improving thermoelectric properties of nanowires through inhomogeneity. J. Electron. Mater. 2017, 46, 2724–2736. [Google Scholar] [CrossRef]
- Sánchez, F.; Amador-Bedolla, C.; Sánchez, V.; Wang, C. Quasiperiodic branches in the thermoelectricity of nanowires. J. Electron. Mater. 2019, 48, 5099–5110. [Google Scholar] [CrossRef]
- González, J.E.; Sánchez, V.; Wang, C. Resonant thermoelectric transport in atomic chains with Fano defects. MRS Commun. 2018, 8, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Sutton, A.P. Electronic Structure of Materials; Oxford University Press: New York, NY, USA, 1993; pp. 107–109. ISBN 0-19-851755-6. [Google Scholar]
- Mizutani, U. Hume-Rothery Rules for Structurally Complex Alloy Phases; CRC Press: Boca Raton, FL, USA, 2011; pp. 1–2. ISBN 978-1-4200-9059-8. [Google Scholar]
- Sánchez, F.; Amador-Bedolla, C.; Sánchez, V.; Wang, C. On the role of driving force in molecular photocells. Phys. B Phys. Condens. Matter 2020, 583, 412052. [Google Scholar] [CrossRef]
- Palavicini, A.; Wang, C. Ab-initio determination of porous silicon refractive index confirmed by infrared transmittance measurements of an omnidirectional multilayer reflector. Appl. Phys. B 2018, 124, 65. [Google Scholar] [CrossRef]
- Palavicini, A.; Wang, C. Ab initio design and experimental confirmation of Fabry–Perot cavities based on freestanding porous silicon multilayers. J. Mater. Sci. Mater. Electron. 2020, 31, 60–64. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, V.; Wang, C. Real Space Theory for Electron and Phonon Transport in Aperiodic Lattices via Renormalization. Symmetry 2020, 12, 430. https://doi.org/10.3390/sym12030430
Sánchez V, Wang C. Real Space Theory for Electron and Phonon Transport in Aperiodic Lattices via Renormalization. Symmetry. 2020; 12(3):430. https://doi.org/10.3390/sym12030430
Chicago/Turabian StyleSánchez, Vicenta, and Chumin Wang. 2020. "Real Space Theory for Electron and Phonon Transport in Aperiodic Lattices via Renormalization" Symmetry 12, no. 3: 430. https://doi.org/10.3390/sym12030430
APA StyleSánchez, V., & Wang, C. (2020). Real Space Theory for Electron and Phonon Transport in Aperiodic Lattices via Renormalization. Symmetry, 12(3), 430. https://doi.org/10.3390/sym12030430