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Abstract: Structural defects are inherent in solids at a finite temperature, because they diminish
free energies by growing entropy. The arrangement of these defects may display long-range orders,
as occurring in quasicrystals, whose hidden structural symmetry could greatly modify the transport of
excitations. Moreover, the presence of such defects breaks the translational symmetry and collapses the
reciprocal lattice, which has been a standard technique in solid-state physics. An alternative to address
such a structural disorder is the real space theory. Nonetheless, solving 1023 coupled Schrödinger
equations requires unavailable yottabytes (YB) of memory just for recording the atomic positions.
In contrast, the real-space renormalization method (RSRM) uses an iterative procedure with a small
number of effective sites in each step, and exponentially lessens the degrees of freedom, but keeps
their participation in the final results. In this article, we review aperiodic atomic arrangements with
hierarchical symmetry investigated by means of RSRM, as well as their consequences in measurable
physical properties, such as electrical and thermal conductivities.

Keywords: quasiperiodicity; localization; tight-binding model; Kubo formula;
low-dimensional systems

1. Introduction

Nowadays, impurities and defects in solids play a central role in microelectronics and modern
materials science, because they deeply alter the propagation and interference of electronic wave
functions [1]. In general, structural disorder obstructs the transport of excitations. However, this
obstruction to both electronic and phononic transport could become beneficial, such as for the
thermoelectricity, whose figure of merit is a function of the ratio between electrical and thermal
conductivities [2].

Since the formulation of quantum mechanics at the beginning of the last century, the study of
crystalline solids is carried out through the reciprocal lattice and local imperfections are addressed as
perturbations [3]. For extended random disorders, the coherent potential approximation (CPA) is used
in their analysis [4]. The discovery of quasicrystals by D. Shechtman et al. in 1984 [5] has stimulated
the development of new techniques to investigate the long range and hierarchically located impurities
or defects. During many years, the quasiperiodic systems have been studied using approximants [6],
whose artificial periodic boundary condition has deep effects on the entire band structure of a truly
quasiperiodic lattice, as illustrated in Figure 1.

To address macroscopic aperiodic lattices, the traditional reciprocal space [7] approach becomes
inappropriate or useless, as the aperiodicity collapses the first Brillouin zone. An alternative way
could be the real-space renormalization method (RSRM) firstly proposed by Leo P. Kadanoff [8] for
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condensed matter physics in 1966, to realize a scaling analysis of magnetization in terms of spin
blocks, which exponentially reduces the degrees of freedom, keeping only the lower energy states.
In 1971, Kenneth G. Wilson [9,10] reformulated the RSRM to introduce the universality classes of
scale-independent critical points in phase transitions and was awarded by the Nobel Prize in Physics
for this work in 1982.
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Figure 1. (color online) (a,b) Density of states (DOS) and (c,d) zero-temperature direct current (DC)
conductivity (σ) versus the chemical potential (µ) for two bond-disordered Fibonacci chains (b,d)
of n = 57 and (a,c) with a unit cell of n = 15. Insets (a’–d’) are the respective magnifications of
(a–d) spectra.

In this article, we first introduce the tight-binding model and the Kubo–Greenwood formula [11] to
describe the electronic transport in Fibonacci chains, as well as RSRM developed to reach macroscopic
length. Other aperiodic chains, beyond the quasiperiodic ones, are further presented with a special
emphasis on their electronic wave-function localization and the ballistic transport states. Studies on
multidimensional aperiodic lattices are subsequently summarized, where the combination of RSRM
with convolution theorem is shown. In Section 5, we discuss vibrational excitations or phonons in
aperiodic lattices, as well as the thermoelectric transport in segmented heterostructures. Final remarks
will be given in the conclusion section.

2. Fibonacci Chains

Let us first consider a single electron in a periodic lattice of atoms, which is usually addressed by
means of Bloch’s theorem [3]. This theorem establishes a general solution of the Schrödinger equation
for a periodic potential, and then the electronic wave functions are commonly written as a linear
combination of plane waves. Alternatively, such wave functions can also be expressed in terms of
atomic orbitals, because they constitute another base for solutions of the Schrödinger equation. In fact,
the orthonormalized orbitals of all atoms, known as Wannier functions, are the Fourier transformed
Bloch functions [3].
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For aperiodic lattices, the Wannier functions localized at each atom remain as a useful base.
The single-band electronic Hamiltonian within the tight-binding formalism can be written as

H =
∑

j

ε j
∣∣∣ j〉〈 j

∣∣∣+∑
〈 j,l〉

t j,l
∣∣∣ j〉〈l| (1)

where ε j is the self-energy of atom j with Wannier function
∣∣∣ j〉 and t j,l is the hopping integral between

the nearest-neighbor atoms j and l denoted by
〈

j, l
〉
. The density of states (DOS) can be calculated

using the single-electron Green’s function (G) [12]:

DOS(E) = −
1
π

lim
η→0+

ImTr[G(E + iη)] (2)

where η is the imaginary part of energy E and the Green’s function is determined by the Dyson equation
given by (E−H)G = 1.

Within the linear response theory, the electrical conductivity (σ) can be determined by means of
the Kubo–Greenwood formula [11,12]:

σxx(µ,ω, T) =
2e2}

Ωπm2

∞∫
−∞

dE
f (E) − f (E + }ω)

}ω Tr
[
pxImG+(E + }ω)pxImG+(E)

]
(3)

where Ω is the system volume, px = (im/})[H, x] = (ima/})
∑

j

{
t j, j+1

∣∣∣ j〉〈 j + 1
∣∣∣− t j, j−1

∣∣∣ j〉〈 j− 1
∣∣∣} is

the projection of the momentum operator along the applied electrical field with x =
∑

j ja
∣∣∣ j〉〈 j

∣∣∣,
G+(E) = G(E + iη) is the retarded Green’s function, and f (E) =

{
1 + exp[(E− µ)/kBT]

}−1 is the
Fermi–Dirac distribution with the chemical potential µ and temperature T. The electrical conductivity
of direct current (DC) at zero temperature of a periodic linear chain (t j,l = t) of N atoms with null
self-energies is as follows [13]:

σP = σ(µ, 0, 0) =
(N − 1)ae2

π} (4)

when the chemical potential is found in the allowed energy band, that is,
∣∣∣µ∣∣∣≤ 2

∣∣∣t∣∣∣. It would be worth
mentioning that the non-uniformity of atomic locations can be introduced through replacing the
hopping integrals t j,l by t̃ j,l =

∣∣∣x j − xl
∣∣∣t j,l /a in the momentum operator expression.

The most studied quasiperiodic system is the Fibonacci chain, shown in Figure 2a, which can be
built using two sorts of bonds (bond problem), two kinds of atoms (site problem), or a combination of
both (mixing problem) [14]. For example, in the bond problem, the nature of atoms is assumed to be the
same (ε j = 0) and two bond strengths tA and tB are ordered following the Fibonacci sequence [15,16],
whose atomic chain of generation n can be obtained using the concatenation of two previous generations,
Fn = Fn−1 ⊕ Fn−2, with the initial conditions of F1 = A and F2 = AB.

In Figure 1, we present (a,b) the density of states (DOS) and (c,d) the DC electrical conductivity at
zero temperature (σ) as functions of the chemical potential (µ) for (a,c) a Fibonacci chain with bond
disorder of tA = 1

2 (
√

5− 1)t and tB = t made of a unit cell of generation n = 15 (987 bonds) repeated
by 229 = 536, 870, 912 times, resulting a chain of N = 529, 891, 590, 145 atoms connected to two leads
built by repeating 2100 times the mentioned unit cell, and (b,d) a Fibonacci chain of generation n = 57
with N = 591, 286, 729, 880 atoms having the same bond disorder strength as in (a,c). Both DOS and σ
results were calculated by means of the renormalization method developed in [17] with grids of (a–d)
800, 000 and (a’–d’) 300, 000 data. The imaginary parts of energy used in these figures are η = 10−6

∣∣∣t∣∣∣
for DOS and η = 10−14

∣∣∣t∣∣∣ for σ spectra.
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Figure 2. (color online) Schematic representations of one-dimensional (a) Fibonacci, (b) Thue-Morse,
(c) branched, and (d) molecular chains, as well as two-dimensional (e) Penrose, (f) Fibonacci, (g) labyrinth,
and (h) Poly(G)-Poly(C) lattices.

Observe the close similarity between DOS spectra shown in Figure 1a,b in contrast to the
conductivity spectra of Figure 1c,d, as well as the remarkable differences between Figure 1a’, b’, where
the continuum energy bands in Figure 1a’ are originated from the periodic repetition of a unit cell.
These differences can significantly modify the calculation of many physical quantities weighted by
DOS spectra, such as the specific heat, optical absorption, and low-temperature DC and alternating
current (AC) conductivities. Hence, the accurate determination of DOS and σ spectra constitutes a
crucial starting point for the study of quasiperiodic systems.

The RSRM has been applied to quasiperiodic systems described by tight-binding Hamiltonian (1)
since the discovery of quasicrystals. For example, from 1984 to 1987, M. Kohmoto and collaborators
carried out renormalization group studies of Cantor-set electronic band spectra [18,19], the diffusion
coefficient [20], localization properties [21,22], and the resistance power–law growth with sample
length [23]. Q. Niu and F. Nori developed, in 1986, a decimation procedure to calculate energy
spectra of Fibonacci chains based on the weak bond approximation [24], which was also applied to a
scaling analysis of sub-band widths [25]. In 1988, H. E. Roman derived a RSRM to calculate on-site
energies and hopping integrals of each generation [26], P. Villaseñor-González, F. Mejía-Lira, and
J. L. Morán-López calculated the electronic density of states in off-diagonal Fibonacci chains [27], while
C. Wang and R. A. Barrio obtained [28] the Raman spectrum measured in GaAs-AlAs quasiperiodic
superlattices [29]. Moreover, the RSRM has also been used for the local electronic density of states [30],
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Ising model [31,32], and alternating current (AC) conductivity [33] through the resistance network
model of Miller and Abrahams [34].

In the 1990s, more attempts were registered to develop and use the renormalization technique.
For example, J. C. López, G. G. Naumis, and J. L. Aragón determined [35] the electronic band structure
of disordered Fibonacci chains following the renormalization procedure of Barrio and Wang [36]; while
R. B. Capaz, B. Koiller, and S. L. A. de Queiroz studied the power–law localization behavior [37]; Y. Liu
and W. Sritrakool found energy spectrum branching rules [38]; A. Chakrabarti et al. analyzed the
nature of eigenstates [39]; and J. X. Zhong et al. calculated the local [40] and average [41] density of
states. Besides, AC conductivity was examined [42,43] within the Miller and Abrahams approach.
During the second half of the decade, F. Piéchon, M. Benakli, and A. Jagannathan established analytical
scaling properties of energy spectra [44]; E. Maciá and F. Domínguez-Adame proved the existence of
transparent states [45]; while A. Ghosh and S. N. Karmakar explored the second-neighbor hopping
problem [46].

From the twenty-first century, the electronic transport in Fibonacci chains was deeply studied via
renormalization. For instance, V. Sánchez et al. developed, in 2001, a sophisticated and exact RSRM
for the Kubo–Greenwood formula (3) applied to the mixing Fibonacci problem [47], and then its AC
conductivity spectra were carefully analyzed [48,49] beyond those obtained from approximants [50].
The renormalization technique was also used for the study of localization [51–53], electronic spectra of
GaAs/GaxAl1−xAs superlattices [54], and arrays of quantum dot [55], as well as for a unified transport
theory of phonon [56], photon [57], and fermionic atom [58] based on the tight-binding model. On the
other hand, by means of RSRM, the fine structure of energy spectra [59] and electronic transport
in Hubbard Fibonacci chains [60,61] were investigated, and a new universality class was found in
spin-one-half Heisenberg quasiperiodic chains [62].

3. Aperiodic Chains besides Fibonacci

Among aperiodic sequences, the generalized Fibonacci (GF) order was one of the most studied,
which can be obtained by the substitutional rule:

A→ AuBv?and B→ A (5)

or using the substitution matrix (M):

(
A
B

)
→M

(
A
B

)
=

(
u v
1 0

)(
A
B

)
=


AA · · ·A︸   ︷︷   ︸

u

BB · · ·B︸  ︷︷  ︸
v

A

 (6)

where u and v are positive integer numbers. Matrix M has the following eigenvalues (λ±):∣∣∣∣∣∣ u− λ v
1 −λ

∣∣∣∣∣∣ = 0 ⇒ λ2
− uλ− v = 0 ⇒ λ± =

u±
√

u2 + 4v
2

(7)

For v = 1, Equation (7) leads to λ+ > 1 and |λ−| < 1, which fulfill the Pisot conjecture [14,63].
Moreover, the determinant of M,

det(M) =

∣∣∣∣∣∣ u v
1 0

∣∣∣∣∣∣ = −v (8)

is unimodular if v = 1. Hence, the corresponding sequences are called quasiperiodic and possess
Bragg-peak diffraction spectra, because both the Pisot eigenvalue condition and the unit-determinant
requirement of M are satisfied [64]. On the contrary, the GF sequences with v , 1 do not satisfy the
unit-determinant requirement and thus they are not quasiperiodic. When u = v = 1, the sequence is
called golden mean or the standard Fibonacci one, while the cases u = 2 and u = 3 are named silver
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and bronze means, respectively, when v = 1, which are also known as the precious means. In addition,
the metallic means stand for the sequences with u = 1 and v > 1 [65].

Since 1988, the electronic properties of GF chains have been investigated [66] and the RSRM
was applied for calculating the average Green’s function [67,68], local [69–73], and integrated [74,75]
density of states, as well as for analyzing the localization of eigenstates [76]. Nonequilibrium phase
transitions were analyzed by means of RSRM and Monte Carlo approaches [77]. Recently, the ballistic
transport was found at the center of energy spectra in macroscopic GF chains with bond disorder
every six generations when v = 1 or all generations when u and v are both even numbers [78], whose
wave-function localization and electrical conductivities (DC and AC) were investigated through a
system length scaling analysis [79].

On the other hand, the Thue–Morse (TM) sequence constitutes another widely studied aperiodic
order, whose nth generation chain, denoted by TMn, can be constructed using the substitution rule
A→ AB and B→ BA , or the addition rule TMn = TMn−1 ⊕ TMn−1, where the symbol ⊕ stands the
string concatenation and TMn is the complement of TMn, obtained by exchanging A and B in TM chains.
The initial condition is TM0 = A, and thus TM3 = ABBABAAB has 23 atoms, being the eight most left
atoms in Figure 2b. The TM sequence accomplishes the Pisot conjecture, but it has a null substitution
matrix determinant, det(M) = 0, as periodic lattices [80]. In consequence, it is not a quasiperiodic
system, but exhibits an essentially discrete diffraction pattern, and then TM heterostructures can be
regarded as an aperiodic crystal according to the definition of crystals given by the International Union
of Crystallography [81]. The RSRM has been applied to the study of electronic properties in TM chains
since 1990 [82], where the density of states [83], trace map problem [84,85], and localization [86,87],
as well as excitonic states [88], were analyzed.

Another example of aperiodic sequence studied by RSRM was period doubling (PD), whose
sequence can be generated by substitutions A→ AB and B→ AA , or the addition rule PDn =

PDn−1 ⊕ PDn−2 ⊕ PDn−2, where PDn is the PD chain of generation n and the initial conditions are
PD0 = A and PD1 = AB. For example, PD2 = ABAA and PD3 = ABAAABAB. The local [89] and
global [90] electronic properties of pristine and random PD chains, as well as critical behavior of the
Gaussian model [91], were studied via RSRM. Moreover, three-component Fibonacci chains, defined by
the inflation rules A→ B , B→ C , and C→ CA , were addressed by the RSRM, where branching rules
of their electronic energy spectra were analytically obtained [92] and compared with the numerical
local density of states [93]. A summary on the nature of electronic wave functions in one-dimensional
(1D) aperiodic lattices can be found in [94].

4. Multidimensional Aperiodic Lattices

Beyond one-dimensional systems, let us first consider a linear chain with branches of atoms, known
as Fano-Anderson defects [95], which is illustrated in Figure 2c and has an average coordination number
of larger than two, but without loops. The appearance of such branches may significantly modify the
transport of excitations along the linear chain owing to the wave interference. In fact, quasiperiodically
placed branches could inhibit the transport of long-wavelength excitations, which are usually unaltered
by local impurities or defects [96]. Electronic transport in a quantum wire with an attached quantum-dot
array was studied by P. A. Orellana et al. in 2003 [97], while engineering Fano resonances in discrete
arrays were proposed by A. E. Miroshnichenko and Y. S. Kivshar in 2005 [98]. During the next decade,
more detailed studies using RSRM were carried out for the transmission coefficient [99–105], Landauer
resistance [106], Lyapunov exponent [100], local DOS [101–103], and Kubo conductivity [107]. Moreover,
the ballistic AC conductivity of periodic lattices has been surpassed through quasiperiodicity [108] or
Fano resonances [109].

Linear chains built by ring molecules, illustrated in Figure 2d, constitute another example of
systems with an effective dimensionality bigger than one, whose atomic loops produce a rich quantum
interference of the conducting wavefunction. This interference enables high-performance molecular
switching with large on/off ratios essential for the next generation of molecular electronics [110,111],
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where the RSRM has been used for the study of Fibonacci arrays of Aharonov–Bohm rings [112],
metal–insulator transition in the quasiperiodic Aubry model [113], electronic transmission in bent
quantum wires [114], and in ladders with a single side-attached impurity [115]. Recently, the electronic
density of states, localization, transmittance, and persistent current in molecular chains and ladders
have been widely investigated via RSRM [116–122], while the spin-selective electronic transport was
also analyzed [123,124]. A review of these studies is presented in [125].

Self-assembled deoxyribonucleic acid (DNA) molecular wires, built by cytosine-guanine (CG) or
adenine-thymine (AT) stacked pairs attached to the double-helix structure through sugar-phosphate
backbones, may behave as a low-dimensional conductor, semiconductors, or insulators, depending on
the system length and base-pair sequences [126,127]. Ab-initio [128,129] and semi-empirical [130,131]
studies of DNA molecules were carried out and, among them, the latter has the advantage of being
simple and suitable for the analysis of electronic transport in aperiodic double chains with macroscopic
length. The DNA molecules can be modelled as a double-strand ladder of coarse grains, which has
been transformed into a single string of base pairs with dangling backbones, known as the fishbone
model, and in turn, it was reduced to a single chain after a two-step renormalization at each base
pair [132]. This chain has been used for the study of electronic transport in Fibonacci [133,134] and
asymmetric [135] DNA molecules, helical structures [136–138], thermoelectric devices [139], diluted
random base-pair segments [140], and Hubbard systems [141]. An additional renormalization process
can be carried out along organic molecular wires to calculate the density of states [142,143], Lyapunov
coefficient [144,145], transmittance [142–145], and magnetoconductance [146]. In fact, the double-strand
ladder model is still used for the analysis of charge transport in quasiperiodic Poly (CG) systems [147]
and a comparison between ladder and fishbone models was also performed [148]. Moreover, a possible
test of the Efimov states in three-strand DNA systems was proposed [149,150]. Several review articles
about DNA-based nanostructures have recently been published [151,152].

A two-dimensional (2D) square Fibonacci lattice can be constructed by superimposing two
1D Fibonacci chains along the x and y axis, as shown in Figure 2f, whose Hamiltonian could be
defined as H2D = H1D

x ⊗ I1D
y + I1D

x ⊗H1D
y with H1D

ν (I1D
ν ) the 1D Hamiltonian (identity matrix) along

the ν = x or y axis. Hence, for the bond problem, this construction procedure is straightforward [153],
while three kinds of sites are generated in the site or mixing problems [154]. A special case of
Fibonacci superlattices is obtained when one of these chains is quasiperiodic and another is periodic,
in which the 2D problem can be addressed by applying the reciprocal space technique along the
periodic direction and the renormalization method along the quasiperiodic one [155]. For the
three-dimensional (3D) case, a Fibonacci superlattice is generally obtained from a 2D periodic lattice
and a 1D quasiperiodic one, as occurring in the quasiperiodic GaAs-AlAs heterostructure constructed
by R. Merlin et al. [156], whose vibrational spectrum was calculated by a combined method of real and
reciprocal spaces [28]. In the last three decades, the splitting rules of electronic energy spectra [157–159],
density of states [160,161], and DC [162–164] and AC [165,166] electrical conductance in 2D Fibonacci
lattices have been extensively studied.

For 3D aperiodic systems with a small cross section, that is, non-periodic nanowires, the electrical
conductance [167,168] and impurity effects [169,170] were investigated by means of the renormalization
plus convolution technique of [17], whose computational efficiency is shown in Figure 3 and compared
to the direct calculation through the matrix inversion process. The computing times shown in Figure 3
correspond to the calculations of zero-temperature DC conductivity given by Equation (3) at µ = 0 for
a quasiperiodic nanowire with a cross section of 5×5 atoms, where the Fortran’s quadruple precision
and a Supermicro workstation with two central processing unit (CPU) processors of Intel Xeon 4108
and 64 GB of DDR4-2666 RAM memory were used. Observe the cubic computing-time increase for the
direct calculation case, in contrast to the logarithmic growth when the renormalization plus convolution
method is used, which permits the study of electronic transport in truly macroscopic 3D lattices with
multiple aperiodically located interfaces. Note also that, for short-length nanowires of 50 atoms,
for example, the direct calculation represents a more efficient option than the renormalization one.
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Figure 3. (color online) A log–log plot of single-energy Kubo conductivity computing time versus the
total number of atoms in a quasiperiodic nanowire with a cross section of 5×5 atoms schematically
illustrated in the inset, where the calculations were performed using a Fortran inversion subroutine
(blue squares) and the renormalization plus convolution method of [17] (red circles).

Another widely studied 2D quasiperiodic lattice is the Penrose tiling, shown in Figure 2e,
whose integrated density of states (IDOS) presents a central peak with about 10% of the total
number of states separated from two symmetric bands by two finite gaps [171,172]. The presence
of these gaps in macroscopic Penrose lattices has been confirmed by a real-space renormalization
study [173] and analyzed by means of a square of the Hamiltonian (H2) obtained from renormalizing
one of the alternating sublattices, because the Penrose tiling is bipartite. The band center of the
original Hamiltonian is mapped to the minimum eigenvalue of H2, whose eigenfunction has
antibonding symmetry and is frustrated by triangular cells in H2 [174,175]. At the same time,
the local [176] and total [177] electronic density of states in Penrose lattices were also studied by a
renormalization method, neglecting the small hopping integrals corresponding to the long diagonal
of kites. Similar renormalization procedures have been applied to the study of the bond percolation
problem [178], phason elasticity [179], Potts spin interaction [180], critical eigenstates [181], and Hubbard
model within the real-space dynamical mean-field theory [182,183].

In general, an exact RSRM for 2D Penrose lattices requires the explicit consideration of all boundary
sites in each generation to calculate the next-generation Green’s function, because it counts all possible
paths between two arbitrary sites. This fact inhibits a suitable application of RSRM to truly macroscopic
Penrose lattices, in contrast to 1D systems, where the number of boundary sites is always two. Hence,
hypercubic aperiodic lattices are commonly addressed by using a renormalization plus convolution
method [17].

Labyrinth lattices, shown in Figure 2g, constitute an example of non-cubically structured 2D
aperiodic tiling, where a novel convolution plus renormalization method has been successfully
applied [184], being the first aperiodic multidimensional lattice beyond hypercubic structures
investigated by means of RSRM. This lattice was first introduced by C. Sire in 1989 obtained from a
Euclidean product of two 1D aperiodic chains [185,186]. The energy spectrum of the Labyrinth tiling
has been proven to be an interval if parameters λx and λy of the x and y direction chains, defined
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by λ ≡
∣∣∣t2

A − t2
B

∣∣∣/tAtB, are sufficiently close to zero, and it is a Cantor set of zero Lebesgue measure if
λx and λy are large enough [187,188]. The wave packet dynamics [189] and quantum diffusion [190]
in the Labyrinth tiling were also analyzed using RSRM. Labyrinth lattices based on silver-means
quasiperiodic chains have been observed in a surface-wave experiment [191].

5. Vibrational Excitations

A solid of N atoms has 3N degrees of freedom and it can translate or rotate as a whole, hence
it may have 3N − 6 normal modes of vibration, in which all atoms move sinusoidally with the same
frequency and a fixed phase relation [3,192]. The quantum of these normal vibrational modes is called
phonon, who has crucial participation in the Raman scattering [193], infrared (IR) spectroscopy [194],
and inelastic neutron scattering [195], as well as in thermal transport [196]. These phonons, as other
elementary excitations in solids, are scattered by impurities, defects, and structural interfaces, and their
transport in quasiperiodic lattices has been studied since the discovery of quasicrystals. For example,
the first quasiperiodic GaAs-AlAs superlattice was built in 1985 [156] and its acoustic Raman spectrum
measured from the backscattering [29] was theoretically reproduced in 1988 [28]. Using RSRM,
the phonon frequencies [197,198], local DOS [199,200], transmission coefficient [201], and lattice
specific heat [202] in Fibonacci chains, as well as vibrational properties in Thue–Morse [202,203],
period-doubling [204], Rudin–Shapiro [204], and three-component Fibonacci [205] systems, were
studied. Experimental determination of phonon behavior was carried out in 1D aperiodic lattices
through the third sound on a superfluid helium film [206], while in 2D Penrose tiling using quasiperiodic
arrays of Josephson junctions [207], tuning forks [208], and LC electric oscillators [209], in which
anharmonic effects were also analyzed.

The lattice thermal conductance (K) given by Equation (5) of [210] is calculated using the RSRM
and comparatively presented in Figure 4 for periodic (165,580,142 atoms), Fibonacci (165,580,142 atoms),
Thue–Morse (134,217,729 atoms), and period doubling (134,217,729 atoms) chains with a uniform
mass M and restoring force constants αA = 1

2 (
√

5− 1)α and αB = α connected to two periodic leads
at their ends, where K0 = πkBω0/6 is the quantum of thermal conductance [211], ω0 =

√
α/M,

and T0 = }ω0/kB. In general, the thermal conductance of aperiodic chains diminishes with the
structural disorder strength and the system length, whose temperature variation K(T) is consistent with
those reported in [212]. The corresponding phonon transmittance spectra are shown in Figure 4a for
Fibonacci, Figure 4b for period doubling, and Figure 4c for Thue–Morse chains in comparison with that
of the periodic one illustrated by the dark-yellow solid lines in each of them, while a low-temperature
magnification of K(T) − T is exposed in Figure 4d for the mentioned chains. Observe in Figure 4d the
nearly linear behavior of K(T) for the periodic case whose small deviation is caused by the finite length
of system, and the presence of a crossing between K(T) curves of Fibonacci and Thue–Morse chains,
where the higher K(T) of Thue–Morse chains at low temperature is originated from its almost one
transmittance around the zero vibrational frequency, as shown in Figure 4c.
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Figure 4. Lattice thermal conductance (K) as a function of temperature (T) for periodic (circles),
Fibonacci (squares), period doubling (up triangles), and Thue–Morse (down triangles) chains. Insets:
the corresponding phononic transmittance spectra of (a) Fibonacci, (b) period doubling, and (c)
Thue–Morse chains, as well as (d) an amplification of K(T)/K0 −T at the low-temperature zone.

For 3D systems, the real-space renormalization plus convolution method has been applied to the
study of lattice thermal conductivity by phonons in quasiperiodic nanowires (NW), whose power–law
temperature dependence as a function of the NW cross-section area has a good agreement with
the experimental results [211]. The direct conversion between thermal and electrical energies can
be achieved by means of thermoelectric devices, whose performance can be measured using the
dimensionless figure-of-merit defined as

ZT = σS2T/(κel + κph) (9)

where S is the Seebeck coefficient; σ is the electrical conductivity; and κel and κph are the electronic
and phononic thermal conductivities, respectively [2]. The inherent correlation between these
thermoelectric quantities makes difficult to improve the value of ZT. Recently, nanowire heterostructures,
such as M2O3/ZnO(M = In,Ga,Fe) with compositional segmentation, have demonstrated a
significant improvement of ZT, mainly owing to the phonon scattering at composite interfaces [213].
Thermoelectricity in periodic and quasiperiodically segmented nanobelts and nanowires were
comparatively studied within the Kubo–Greenwood formalism [214], and the results reveal the
importance of segmentation in ZT as well as its further improvement when the quasiperiodicity is
introduced, because it significantly diminishes the thermal conduction of long wavelength acoustic
phonons, which are responsible for the thermal conductivity by phonons at low a temperature and
do not feel local defects nor impurities [215]. Furthermore, branches of atoms attached to a nanowire
may significantly modify the transport of excitations along it owing to wave interference, whose
resonance produces zones of a very high value of ZT in the Hamiltonian parameter space [216].
Poly(G)-poly(C) DNA-like double chains, shown in Figure 2h, constitute another interesting example
of branched low-dimensional systems, where the fishbone model and the two-site coarse grain
model based on the Born potential including central and non-central interactions are used for the
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calculation of electrical and lattice thermal conductivities, respectively, through the Kubo–Greenwood
formula [217]. The results show the appearance of gaps in phononic transmittance spectra and a
remarkable enhancement of ZT when periodic interfaces between poly(G) and poly(C) segments
are introduced. Such ZT can be further improved by introducing a long-range quasiperiodic order,
which avoids the thermal transport of numerous low-frequency phonons responsible of the lattice
thermal conduction at a low temperature. Finally, the reservoirs have an important participation on
the ZT, as they constitute the boundary conditions of the quantum system and may cause resonant
interferences favoring the thermoelectric transport [210].

6. Conclusions

An aperiodic solid could be thermodynamically stable by the growth of entropy, the appearance
of electronic energy gap around of the Fermi energy as occurred in the Peierls instability [218],
or mechanisms described by the Hume–Rothery rules [219]. Such structural asymmetry represents a
singular opportunity to achieve many unique physical properties. For example, the union of positively
and negatively doped semiconductors constitutes the base of current microelectronics and modern
illumination. Nevertheless, the presence of these structural interfaces requires new approaches for its
study and design.

From the theoretical point of view, the tight-binding or Hubbard Hamiltonian based on the
Wannier functions provides an atomic scale modelling of measurable physical quantities, where the
huge degrees of freedom should be efficient and accurately addressed by taking the advantage of
all visible and hidden symmetries. For instance, the exciton diffusion in organic solar cells has been
recently analyzed by means of an attractive Hubbard Hamiltonian and the real-space renormalization
method (RSRM) [220]. For aperiodic lattices with hierarchically structured inhomogeneities, the RSRM
seems to be an ideal candidate because the structural scaling rule of these aperiodic lattices can be
used as the starting point of RSRM. However, this procedure is truly useful only in 1D systems
because they have a constant number of boundary atoms, in contrast to multidimensional systems
whose boundary-atom number grows with the system size. These boundary atoms are extremely
important for the Green’s function determination, that is, a precise counting of all possible paths
between two arbitrary atoms. For separable Hamiltonians, such as nearest-neighbor tight-binding
Hamiltonian in cubically structured aperiodic lattices, a combination of the convolution theorem and
RSRM has demonstrated its effectiveness [17]. Beyond cubically structured systems, the labyrinth
lattice has been the first non-hypercubic aperiodic network recently addressed by the renormalization
plus convolution scheme, where a new convolution theorem for a product of Hamiltonians instead
of summation in the traditional convolution theorem was developed [184]. This fact opens a new
horizon for the applicability of RSRM to more complex multidimensional aperiodic structures. On the
other hand, the design of electronic and optical devices based on quantum mechanical calculations
has been one of the biggest dreams of physicists and engineers, and the recent advances in RSRM
bring it closer because these electronic and optical devices usually contain multiple aperiodic located
structural interfaces. For example, first-principle calculations have been used in the multiscale design
of omnidirectional dielectric reflectors [221] and Fabry–Perot resonators [222], whose results were
experimentally confirmed.

Finally, despite the proven efficiency of RSRM in the study of systems with huge degrees of
freedom, there are still many challenges in the development and application of new RSRM and they
might be summarized as follows: (1) extend the applicability of RSRM to multidimensional lattices
with complex structural symmetry; (2) combine the RSRM with the density functional theory to
address multielectron systems; and (3) apply the RSRM to strong correlated phenomena, such as
the superconductivity.

Author Contributions: V.S. and C.W. both participated in the conceptualization, reference analysis, figure
preparation, manuscript writing, and final revision. All authors have read and agreed to the published version of
the manuscript.



Symmetry 2020, 12, 430 12 of 21

Funding: This research was partially supported by the Consejo Nacional de Ciencia y Tecnología of Mexico through
grant 252943 and by the National Autonomous University of Mexico (UNAM) through projects PAPIIT-IN115519
and PAPIIT-IN110020. Computations were performed at Miztli of DGTIC, UNAM.

Acknowledgments: We would like to thank Antonio Galeote for his participation at early stages of this article
and Fernando Sánchez for stimulating conversations and technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

YB Yottabytes
RSRM Real-space renormalization method
CPA Coherent potential approximation
CPU Central processing unit
1D One-dimensional
2D Two-dimensional
3D Three-dimensional
DC Direct current
AC Alternating current
DOS Density of states
IDOS Integrated density of states
GF Generalized Fibonacci
TM Thue–Morse
PD Period doubling
NW Nanowires
IR Infrared
DNA Deoxyribonucleic acid
A Adenine
C Cytosine
G Guanine
T Thymine
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