Threshold Analysis and Stationary Distribution of a Stochastic Model with Relapse and Temporary Immunity
Abstract
1. Introduction
2. Existence and Uniqueness of the Global Positive Solution
3. Extinction of the Disease
4. Persistence in the Mean
5. Existence of a Stationary Distribution
- If . In this case, we choose and a to be sufficiently small, such that
- If and , we choose to be sufficiently small, such that
- If and , we choose to be sufficiently close to 1, such that
- If and , we choose to be sufficiently close to 1 and a to be sufficiently small, such that
6. Numerical Simulations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anderson, R.; May, R.; Medley, G. A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J. Math. Appl. Med. Biol. 1986, 3, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.E.; Zhou, Y.C.; Wu, J.H. Modeling and Dynamics of Infectious Diseases; Higher Education Press: Beijing, China, 2009. [Google Scholar]
- Herbert, H.W. The mathematics of infectious diseases. SIAM Rev. 2000, 42, 599–653. [Google Scholar]
- Brauer, F.; Chavez, C.C. Mathematical Models in Population Biology and Epidemiology; Springer: New York, NY, USA, 2001. [Google Scholar]
- Liu, K.Y.; Zhang, T.Q.; Chen, L.S. State-dependent pulse vaccination and therapeutic strategy in an SI epidemic model with nonlinear incidence rate. Comput. Math. Methods Med. 2019, 2019, 3859815. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.C.; Liu, J.L.; Chi, M.N.; Bian, F.F. Dynamics analysis of stochastic epidemic models with standard incidence. Adv. Differ. Equ. 2019, 2019, 22. [Google Scholar] [CrossRef]
- Qi, H.K.; Leng, X.N.; Meng, X.Z.; Zhang, T.H. Periodic Solution and Ergodic Stationary Distribution of SEIS Dynamical Systems with Active and Latent Patients. Qual. Theory Dyn. Syst. 2019, 18, 347–369. [Google Scholar] [CrossRef]
- Wang, X.H.; Wang, Z.; Shen, H. Dynamical analysis of a discrete-time SIS epidemic model on complex networks. Appl. Math. Lett. 2019, 94, 292–299. [Google Scholar] [CrossRef]
- Korobeinikov, A. Lyapunov functions and global stability for SIR and SIRS epidemiological models with nonlinear transmission. Bull. Math. Biol. 2006, 30, 615–636. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, D.Q.; Hayat, T.; Alsaedi, A. Threshold behavior in a stochastic delayed SIS epidemic model with vaccination and double diseases. J. Franklin Inst. 2019, 356, 7466–7485. [Google Scholar] [CrossRef]
- Meng, X.Z.; Zhao, S.N.; Feng, T.; Zhang, T.H. Dynamics of a novel nonlinear atochastic SIS epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 2016, 433, 227–242. [Google Scholar] [CrossRef]
- Chang, Z.B.; Meng, X.Z.; Zhang, T.H. A new way of investigating the asymptotic behaviour of a stochastic SIS system with multiplicative noise. Appl. Math. Lett. 2019, 87, 80–86. [Google Scholar] [CrossRef]
- Gao, N.; Song, Y.; Wang, X.Z.; Liu, J.X. Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates. Adv. Differ. Equ. 2019, 2019, 41. [Google Scholar] [CrossRef]
- Fatini, M.E.; Khalifi, M.E.; Gerlach, R.; Laaribi, A.; Taki, R. Stationary distribution and threshold dynamics of a stochastic SIRS model with a general incidence. Phys. A 2019, 534, 120696. [Google Scholar] [CrossRef]
- Song, Y.; Miao, A.Q.; Zhang, T.Q. Extinction and persistence of a stochastic SIRS epidemic model with saturated incidence rate and transfer from infectious to susceptible. Adv. Differ. Equ. 2018, 2018, 293. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, D.Q.; Hayat, T.; Alsaedi, A. Threshold dynamics of a stochastic SIS epidemic model with nonlinear incidence rate. Phys. A 2019, 526, 120946. [Google Scholar] [CrossRef]
- Tudor, D. A deterministic model for herpes infections in human and animal polulations. SIAM Rev. 1990, 32, 130–139. [Google Scholar] [CrossRef]
- Zhang, W.W.; Meng, X.Z.; Dong, Y.L. Periodic Solution and Ergodic Stationary Distribution of Stochastic SIRI Epidemic Systems with Nonlinear Perturbations. J. Syst. Sci. Complex. 2019, 32, 1104–1124. [Google Scholar] [CrossRef]
- Blower, S. Modeling the genital herpes epidemic. Herpes 2004, 11 (Suppl. 3), 138A. [Google Scholar]
- Ding, S.S.; Wang, F.J. Sili epidemiological model with nonlinear incidence rates. J. Biomath. 1994, 9, 1–59. [Google Scholar]
- Dorodnitsyn, V. Applications of Lie Groups to Difference Equations; Chapman and Hall/CRC: Boca Raton, FL, USA, 2010. [Google Scholar]
- Stephani, H. Differential Equations: Their Solution Using Symmetries; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Khasminskii, R. Stochastic Stability of Differential Equations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Rudnicki, R. Long-time behaviour of a stochastic prey-predator model. Stoch. Proc. Appl. 2003, 108, 93–107. [Google Scholar] [CrossRef]
- Rudnicki, R.; Pichor, K. Influence of stochastic perturbation on prey-predator systems. Math. Biosci. 2007, 206, 108–119. [Google Scholar] [CrossRef]
- Bell, D.R. The Malliavin Calculus; Dover Publications: New York, NY, USA, 2006. [Google Scholar]
- Qi, H.K.; Meng, X.Z.; Chang, Z.B. Markov semigroup approach to the analysis of a nonlinear stochastic plant disease model. Electron. J. Differ. Equ. 2019, 2019, 1–19. [Google Scholar]
- Yang, Y.; Xia, J.W.; Zhao, J.L.; Li, X.D.; Wang, Z. Multiobjective nonfragile fuzzy control for nonlinear stochastic financial systems with mixed time delays. Nonlinear Anal. Model. Control 2019, 24, 696–717. [Google Scholar] [CrossRef]
- Hou, J.; Zhao, Y. Some remarks on a pair of seemingly unrelated regression models. Open Math. 2019, 17, 979–989. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Z.; Zhang, Y.; Chen, C.L.P. Adaptive finite-time control of stochastic nonlinear systems with actuator failures. Fuzzy Sets Syst. 2019, 374, 170–183. [Google Scholar] [CrossRef]
- Wang, Y.F.; Cheng, H.D.; Li, Q.J. Dynamic analysis of wild and sterile mosquito release model with Poincare map. Math. Biosci. Eng. 2019, 16, 7688–7706. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.D.; Chang, Z.B.; Meng, X.Z. Asymptotic analysis of impulsive dispersal predator-prey systems with Markov switching on finite-state space. J. Funct. Spaces 2019, 2019, 8057153. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, J.W.; Sun, W.; Zhuang, G.M.; Wang, Z. Finite-time tracking control for stochastic nonlinear systems with full state constraints. Appl. Math. Comput. 2018, 338, 207–220. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, T.L.; Fu, Y.; Ma, L.M. Finite-Time Stochastic H∞ Control for Singular Markovian Jump Systems With (x,v)-Dependent Noise and Generally Uncertain Transition Rates. IEEE Access 2019, 7, 64812–64826. [Google Scholar] [CrossRef]
- Wang, F.; Chen, B.; Sun, Y.M.; Lin, C. Finite time control of switched stochastic nonlinear systems. Fuzzy Sets Syst. 2019, 365, 140–152. [Google Scholar] [CrossRef]
- Shi, Z.Z.; Li, Y.N.; Cheng, H.D. Dynamic analysis of a pest management smith model with impulsive state feedback control and continuous delay. Mathematics 2019, 7, 591. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.Q.; Meng, X.Z. Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function. Comput. Appl. Math. 2019, 38, 95. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, D.Q. The threshold of a stochastic delayed SIR epidemic model with vaccination. Phys. A 2016, 461, 140–147. [Google Scholar] [CrossRef]
- Gao, S.J.; Chen, L.S.; Nieto, J.J.; Torres, A. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 2006, 24, 6037–6045. [Google Scholar] [CrossRef]
- Li, Y.J.; Meng, X.Z. Dynamics of an impulsive stochastic nonautonomous chemostat model with two different growth rates in a polluted environment. Discret. Dyn. Nat. Soc. 2019, 2019, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yin, G. Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 2007, 46, 1155–1179. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Meng, X.; Qi, H. Threshold Analysis and Stationary Distribution of a Stochastic Model with Relapse and Temporary Immunity. Symmetry 2020, 12, 331. https://doi.org/10.3390/sym12030331
Liu P, Meng X, Qi H. Threshold Analysis and Stationary Distribution of a Stochastic Model with Relapse and Temporary Immunity. Symmetry. 2020; 12(3):331. https://doi.org/10.3390/sym12030331
Chicago/Turabian StyleLiu, Peng, Xinzhu Meng, and Haokun Qi. 2020. "Threshold Analysis and Stationary Distribution of a Stochastic Model with Relapse and Temporary Immunity" Symmetry 12, no. 3: 331. https://doi.org/10.3390/sym12030331
APA StyleLiu, P., Meng, X., & Qi, H. (2020). Threshold Analysis and Stationary Distribution of a Stochastic Model with Relapse and Temporary Immunity. Symmetry, 12(3), 331. https://doi.org/10.3390/sym12030331