Bilaterally Symmetrical: To Be or Not to Be?
Abstract
:1. Introduction
- Tyger Tyger, burning bright,
- In the forests of the night;
- What immortal hand or eye,
- Could frame thy fearful symmetry.
The symmetry of the limbs and sensory systems probably drove the symmetry of the brain itself, at least insofar as much of brain activity has to do with interpreting the sensory world and organizing appropriate actions.The slightest loss of bilateral symmetry, such as the loss of a right eye, would have immediate negative value for the survival of any animal. An enemy could sneak up unobserved on the right!(p. 70)
2. The Breaking of Symmetry
Six thousand years of lop-armed, lop-legged savages, some barbarous, some civilized, have not created a single lop-legged, lop-armed child, and never will. Every child is even and either handed until some grown fool interferes and mutilates it.(p. 175)
The right-hemisphere specialties were all, of course, nonverbal, nonmathematical, and nonsequential. They were largely spatial and imagistic, the kind in which a single picture or mental image is worth a thousand words. Examples include reading faces, fitting designs into larger matrices, judging whole circle size from a small arc, discriminating and recalling nondescript shapes, making mental spatial transformations, discriminating musical chords, sorting block sizes and shapes into categories, perceiving wholes from a collection of parts, and the intuitive perception and apprehension of geometric principles.(p. 1224)
3. Differences between Species
4. Why Asymmetry?
5. Where did Asymmetry Come from?
6. The Evolutionary Tradeoff
Factors in phylogenetic evolution that tend to introduce heritable differences between left and right are likely to be held in check by the advantages an animal derives from the bilateral formation of its organs of motion, cilia, muscles and limbs: in case of their asymmetrical development a screw-wise instead of a straightforward motion would naturally result. This may help to explain why our limbs obey the laws of symmetry more than our inner organs.(p. 27)
Funding
Conflicts of Interest
References
- Leblanc, R. Fearful Asymmetry: Bouillaud, Dax, Broca, and the Localization of Language, Paris, 1825–1879; McGill-Queen’s University Press: Fountain Valley, CA, USA, 2017. [Google Scholar]
- Dax, M. Lésions de la moitié gauche de l’encéphale coïncident avec l’oubli des signes de la pensée (lu à Montpellier en 1836). Bull. Hebd. Médecine Chir. Série 1865, 2, 259–262. [Google Scholar]
- Gardner, M. The Ambidextrous Universe; Allen Lane The Penguin Press: London, UK, 1967. [Google Scholar]
- Corballis, M.C.; Beale, I.L. The Psychology of Left and Right; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1976. [Google Scholar]
- Corballis, M.C. Mirror-image equivalence and interhemispheric mirror-image reversal. Front. Hum. Neurosci. 2018, 12. [Google Scholar] [CrossRef]
- Gordon, H. Left-handedness and mirror writing, especially among defective children. Brain 1921, 43, 313–368. [Google Scholar] [CrossRef]
- Simpson, E. Reversals: A Personal Account of Victory over Dyslexia; Gollancz: London, UK, 1980. [Google Scholar]
- Bisazza, A.; Cantalupo, C.; Capocchiano, M.; Vallortigara, G. Population lateralization and social behaviour: A study with 16 species of fish. Laterality 2000, 5, 269–284. [Google Scholar] [CrossRef]
- Hannay, H.J.; Ciaccia, P.J.; Kerr, J.W.; Barrett, D. Self-report of right-left confusion in college men and women. Percept. Mot. Ski. 1990, 70, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.J.; Gitterman, S.R. University professors’ self-descriptions of left-right confusability: Sex and handedness differences. Percept. Mot. Ski. 1978, 47, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Needham, R. Right and Left: Essays on Dual Symbolic Classification; University of Chicago Press: Chicago, IL, USA, 1973. [Google Scholar]
- Lozano, M.; Estalrrich, A.; Bondioli, L.; Fiore, I.; Bermudez de Castro, J.-M.; Arsuaga, J.L.; Carbonell, E.; Rosas, A.; Frayer, D.W. Right-handed fossil humans. Evol. Anthropol. 2017, 26, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Reade, C. The coming man. Letter to the Editor. Harper’s Wkly. 1978, 2, 174–175. [Google Scholar]
- Jackson, J. Ambidexterity or Two-Handedness and Two-Brainedness: An Argument for Natural Development and Rational Education; Kegan Paul, Trench, Trubner & Co.: London, UK, 1905. [Google Scholar]
- Hepper, P.G.; McCartney, G.R.; Shannon, E.A. Lateralised behaviour in first trimester human fetuses. Neuropsychologia 1998, 36, 531–534. [Google Scholar] [CrossRef]
- Medland, S.E.; Duffy, D.L.; Wright, M.J.; Geffen, G.M.; Hay, D.A.; Levy, F.; van-Beijsterveldt, C.; Willemsen, G.; Townsend, G.C.; Hewitt, A.W.; et al. Genetic influences on handedness: Data from 25,732 Australian and Dutch twin families. Neuropsychologia 2009, 47, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Broca, P. Remarques sur la sieège de la faculté du langage articulé, suivies d’une observation d’aphémie. Bull. Société Anat. Paris 1981, 2, 330–357. [Google Scholar]
- Wernicke, C. Der Aphasische Symptomencomplex. Eine Psychologische Studie Auf Anatomische Basis; Cohn and Wiegert: Breslau, Poland, 1974. [Google Scholar]
- Harrington, A. Medicine, Mind, and the Double Brain; Princeton University Press: Princeton, NJ, USA, 1987. [Google Scholar]
- Sperry, R.W. Some effects of disconnecting the cerebral hemisphere. Science 1982, 217, 1223–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogen, J.E. The other side of the brain II: An appositional mind. Bull. Los Angel. Neurol. Soc. 1969, 34, 135–162. [Google Scholar]
- Corballis, M.C. Laterality and myth. Am. Psychol. 1980, 35, 254–265. [Google Scholar] [CrossRef]
- Edwards, B. Drawing on the Right Side of the Brain: A Course in Enhancing Creativity and Artistic Confidence; Tarcher: Los Angeles, CA, USA, 1979. [Google Scholar]
- McGilchrist, I. The Master and His Emissary: The Divided Brain and the Making of the Western World; Yale University Press: New Haven, CT, USA, 1999. [Google Scholar]
- Mazoyer, B.; Zago, L.; Jobard, G.; Crivello, F.; Joliot, M.; Perchey, G.; Mellet, E.; Petit, L.; Tzourio-Mazoyer, N. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLoS ONE 2014, 9, e101165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badzakova-Trajkov, G.; Corballis, M.C.; Häberling, I.S. Complementarity or independence of hemispheric specializations? A brief review. Neuropsychologia 2016, 93, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Häberling, I.S.; Corballis, P.M.; Corballis, M.C. Language, gesture, and handedness: Evidence for independent lateralized networks. Cortex 2016, 82, 72–85. [Google Scholar] [CrossRef]
- Liu, H.; Stufflebeam, S.M.; Sepulcre, J.; Hedden, T.; Buckner, R. Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proc. Natl. Acad. Sci. USA 2009, 106, 20499–20503. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.-Z.; Mathias, S.R.; Guadalupea, T.; ENIGMA Laterality Working Group 2; Glahn, D.C.; Frank, B. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc. Natl. Acad. Sci. USA 2018, 115, E5154–E5163. Available online: www.pnas.org/cgi/doi/10.1073/pnas.1718418115 (accessed on 1 December 2019). [CrossRef] [Green Version]
- Wiberg, A.; Ng, M.; Al Omran, Y.; Alfaro-Almagro, F.; McCarthy, P.; Marchini, J.; Bennett, D.L.; Smith, S.; Douaud, G.; Furniss, D. Handedness, language areas and neuropsychiatric diseases: Insights from brain imaging. Brain 2019, 142, 2938–2947. [Google Scholar] [CrossRef] [Green Version]
- Nudo, R.J.; Jenkins, W.M.; Merzenich, M.M.; Prejean, T.; Grenda, R. Neurophysiological correlates of hand preference in primary motor cortex of adult squirrel monkeys. J. Neurosci. 1992, 12, 2918–2947. [Google Scholar] [CrossRef] [Green Version]
- Phillips, K.; Sherwood, C.C. Primary motor cortex asymmetry correlates with handedness in capuchin monkeys (Cebus apella). Behav. Neurosci. 2005, 119, 1701–1704. [Google Scholar] [CrossRef] [PubMed]
- Dadda, M.; Cantalupo, C.; Hopkins, W.D. Further evidence of an association between handedness and neuroanatomical asymmetries in the primary motor cortex of chimpanzees (Pan troglodytes). Neuropsychologia 2006, 44, 2582–2586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Essen, D.C.; Donahue, C.J.; Coalson, T.S.; Kennedy, H.; Hayashi, T.; Glasser, M.F. Cerebral cortical folding, parcellation, and connectivity in humans, nonhuman primates, and mice. Proc. Natl. Acad. Sci. USA 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chance, S.A.; Crow, T.J. Distinctively human: Cerebral lateralisation and language in Homo sapiens. J. Anthropol. Sci. 2007, 85, 83–100. [Google Scholar]
- Corballis, M.C. The Lopsided Ape; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Crow, T.J. Why cerebral asymmetry is the key to the origin of Homo sapiens: How to find the gene or eliminate the theory. Curr. Psychol. Cogn. 1998, 17, 1237–1277. [Google Scholar]
- Gazzaniga, M.S. Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain 2000, 123, 1293–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, L.J.; Vallortigara, G.; Andrew, R.J. Divided Brains: The Biology and Behaviour of Brain Asymmetries; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Hopkins, W.D. Chimpanzee handedness revisited: 55 years since Finch. Psychon. Bull. Rev. 1996, 3, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.D.; Wesley, M.J.; Izard, M.K.; Hook, M.; Schapiro, S.J. Chimpanzees (Pan troglodytes) are predominantly right-handed: Replication in three populations of apes. Behav. Neurosci. 2004, 118, 659–663. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.J. Lateralization in the avian brain. Bird Behav. 1980, 2, 1–12. [Google Scholar] [CrossRef]
- Giljov, A.; Karenina, K.; Ingram, J.; Malashichev, Y. Parallel emergence of true handedness in the evolution of marsupials and placentals. Curr. Biol. 2015, 14, 1778–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, R.H. Lateralization of neural control for vocalization by the frog (Rana pipiens). Psychobiology 1993, 21, 243–248. [Google Scholar]
- Ehert, G. Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature 1987, 325, 249–251. [Google Scholar]
- Siniscalchi, M.; Laddago, S.; Quaranta, A. Auditory lateralization of conspecific and heterospecific vocalizations in cats. Laterality Asymmetries Body Brain Cogn. 2016, 21, 215–227. [Google Scholar] [CrossRef]
- Siniscalchi, M.; Quaranta, A.; Rogers, L.J. Hemispheric specialization in dogs for processing different acoustic stimuli. PLoS ONE 2008, 3, e3349. [Google Scholar] [CrossRef]
- Basile, M.; Boivin, S.; Boutin, A.; Blois-Heulin, C.; Hausberger, M.; Lemasson, A. Socially dependent auditory laterality in domestic horses (Equus caballus). Anim. Cogn. 2009, 12, 611–619. [Google Scholar] [CrossRef]
- Böye, M.; Güntürkün, O.; Vauclair, J. Right ear advantage for conspecific calls in adults and subadults, but not infants, California sea lions (Zalophus californianus): Hemispheric specialization for communication? Eur. J. Neurosci. 2005, 21, 1727–1732. [Google Scholar] [CrossRef]
- Hauser, M.D.; Anderson, K. Functional lateralization for auditory temporal processing in adult, but not infant rhesus monkeys: Field experiments. Proc. Natl. Acad. Sci. USA 1994, 91, 3946–3948. [Google Scholar] [CrossRef] [Green Version]
- Heffner, H.E.; Heffner, R.S. Temporal lobe lesions and perception of species-specific vocalizations by Japanese macaques. Science 1984, 226, 75–76. [Google Scholar] [CrossRef]
- Hopkins, W.D.; Marino, L.; Rilling, J.K.; MacGregor, L.A. Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI). Neuroreports 1998, 9, 2913–2918. [Google Scholar] [CrossRef]
- Foundas, A.L.; Leonard, C.M.; Gilmore, R.L.; Fennell, E.B.; Heilman, K.M. Pars triangularis asymmetry and language dominance. Proc. Natl. Acad. Sci. USA 1996, 93, 719–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrester, G.S.; Todd, B.K. A comparative perspective on lateral biases and social behaviour. In Progress in Brain Research, Cerebral Lateralization and Cognition: Evolutionary and Developmental Investigations of Behavioral Biases; Forrester, G.S., Hopkins, W.D., Hudry, K., Lindell, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 238, pp. 377–403. [Google Scholar]
- Sperry, R.W.; Zaidel, E.; Zaidel, D. Self recognition and social awareness in the deconnected minor hemisphere. Neuropsychologia 1979, 17, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.J. Lateralized brain function in anurans: Comparison to lateralization in other vertebrates. Laterality 2002, 7, 219–240. [Google Scholar] [CrossRef] [PubMed]
- Deckel, A.W. Laterality of aggressive responses in Anolis. J. Exp. Zool. 1995, 272, 194–200. [Google Scholar] [CrossRef]
- Howard, K.J.; Rogers, L.J.; Boura, A.L. Functional lateralisation of the chicken forebrain revealed by use of intracranial glutamate. Brain Res. 1980, 188, 369–382. [Google Scholar] [CrossRef]
- Casperd, J.M.; Dunbar, R.I.M. Asymmetries in the visual processing emotional cues during agonistic interactions in gelada baboons. Behav. Process. 1996, 37, 57–65. [Google Scholar] [CrossRef]
- Devinsky, O.; Ronsaville, D.; Cox, C.; Witt, E.; Fedio, P.; Theodore, W.H. Interictal aggression in epilepsy: The Buss-Durkee hostility inventory. Epilepsia 1994, 35, 585–590. [Google Scholar] [CrossRef]
- MacNeilage, P.F.; Rogers, L.J.; Vallortigara, G. Origins of the left and right brain. Sci. Am. 2009, 301, 60–67. [Google Scholar] [CrossRef]
- Ghirlanda, S.; Frasnelli, E.; Vallortigara, G. Intraspecific competition and coordination in the evolution of lateralization. Philos. Trans. R. Soc. Lond. Biol. Sci. 2009, 364, 861–866. [Google Scholar] [CrossRef] [Green Version]
- Corballis, M.C. Mental time travel: A case for evolutionary continuity. Trends Cogn. Sci. 2013, 17, 5–6. [Google Scholar] [CrossRef]
- Corballis, M.C. Language, memory, and mental time travel: An evolutionary perspective. Front. Hum. Neurosci. 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Hockett, C.F. The origins of speech. Sci. Am. 1960, 203, 88–96. [Google Scholar] [CrossRef]
- Wittman, A.B.; Wall, L.L. The evolutionary origins of obstructed labor: Bipedalism, encephalization, and the human obstetric dilemma. Obstet. Gynecol. Surv. 2007, 62, 739–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrmann, M.; Plaut, D.C. A vision of graded hemispheric specialization. Ann. N. Y. Acad. Sci. 2015, 1359, 30–46. [Google Scholar] [CrossRef] [PubMed]
- Frasnelli, E.; Vallortigara, G. Individual-level and population-level lateralization: Two sides of the same coin. Symmetry 2018, 10, 739. [Google Scholar] [CrossRef]
- Watson, J.D.; Crick, F.H.C. A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Lee, T.D.; Yang, C.D. Question of parity conservation in weak interactions. Phys. Rev. 1956, 104, 254–258. [Google Scholar] [CrossRef]
- Vester, F.; Ulbricht, T.L.V.; Krauch, H. Optische Aktivität und die Paritätsverletzung im β-Zerfall. Naturwissenschaften 1959, 46, 68. [Google Scholar] [CrossRef]
- Ulbricht, T.V.L.; Vester, F. Attempts to induce optical activity with polarized radiation. Tetrahedron 1962, 18, 629–637. [Google Scholar] [CrossRef]
- Dreiling, J.M.; Gay, T.J. Chirally sensitive electron-induced molecular breakup and the Vester-Ulbricht hypothesis. Phys. Rev. Lett. 2014, 113, 118104. [Google Scholar] [CrossRef] [Green Version]
- Vopalensky, P.; Tosches, M.A.; Achim, K.; Handberg-Thorsager, M.; Arendt, D. From spiral cleavage to bilateral symmetry: The developmental cell lineage of the annelid brain. BMC Biol. 2019, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyl, H. Symmetry; Princeton University Press: Princeton, NJ, USA, 1952. [Google Scholar]
- Torgersen, J. Situs inversus, asymmetry, and twinning. Am. J. Hum. Genet. 1950, 2, 361–370. [Google Scholar] [PubMed]
- Douard, R.; Feldman, A.; Bargy, F.; Loric, S.; Delmas, V. Anomalies of lateralization in man a case of total situs inversus. Surg. Radiol. Anat. 2000, 22, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Layton, W.M., Jr. Random determination of a developmental process. J. Hered. 1976, 67, 336–338. [Google Scholar] [CrossRef]
- Annett, M. Handedness and Brain Asymmetry: The Right Shift Theory; Psychology Press: Hove, UK, 2002. [Google Scholar]
- Corballis, M.C. The genetics and evolution of handedness. Psychol. Rev. 1997, 104, 714–727. [Google Scholar] [CrossRef]
- Brackenridge, C.J. Secular variations in handedness over ninety years. Neuropsychologia 1981, 24, 74–90. [Google Scholar] [CrossRef]
- Levy, J. Psychobiological implications of bilateral asymmetry. In Hemispheric Function in the Human Brain; Dimond, S.J., Beaumont, J.G., Eds.; Paul Elek: London, UK, 1974; pp. 121–183. [Google Scholar]
- Szathmáry, E. Toward major evolutionary transitions theory 2.0. Proc. Natl. Acad. Sci. USA 2015, 102, 10104–10111. [Google Scholar] [CrossRef] [Green Version]
- McManus, I.C.; Davison, A.; Armour, J.A.L. Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies. Ann. N. Y. Acad. Sci. 2009, 1288, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Arning, L.; Ocklenburg, S.; Schulz, S.; Ness, V.; Gerding, W.M.; Hengstler, J.G.; Falkenstein, M.; Epplen, J.T.; Güntürkün, O.; Beste, C. PCSK6VNTR polymorphism is associated with degree of handedness but not direction of handedness. PLoS ONE 2013, 8, e67251. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Kuriya, N.; Akagi, T.; Ohbu, K.; Toyoda, O.; Morita, J.; Ichikawa, K.; Matsuishi, T.; Hayashi, M.; Kato, H. Handedness and laterality of the viscera. Neurology 1997, 49, 1751. [Google Scholar] [CrossRef]
- Kennedy, D.N.; O’Craven, K.M.; Ticho, B.S.; Goldstein, A.M.; Makris, N.; Henson, J.W. Structural and functional brain asymmetries in human situs inversus totalis. Neurology 1999, 53, 1260–1265. [Google Scholar] [CrossRef] [PubMed]
- Anon Article III: 1. Letters sur l’éducation des filles. Q. Rev. Lond. 2002, 192, 394–430.
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corballis, M.C. Bilaterally Symmetrical: To Be or Not to Be? Symmetry 2020, 12, 326. https://doi.org/10.3390/sym12030326
Corballis MC. Bilaterally Symmetrical: To Be or Not to Be? Symmetry. 2020; 12(3):326. https://doi.org/10.3390/sym12030326
Chicago/Turabian StyleCorballis, Michael C. 2020. "Bilaterally Symmetrical: To Be or Not to Be?" Symmetry 12, no. 3: 326. https://doi.org/10.3390/sym12030326