Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = mirror-image discrimination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9471 KB  
Article
Tumor-Associated Tractography Derived from High-Angular-Resolution Q-Space MRI May Predict Patterns of Cellular Invasion in Glioblastoma
by Owen P. Leary, John P. Zepecki, Mattia Pizzagalli, Steven A. Toms, David D. Liu, Yusuke Suita, Yao Ding, Jihong Wang, Renjie He, Caroline Chung, Clifton D. Fuller, Jerrold L. Boxerman, Nikos Tapinos and Richard J. Gilbert
Cancers 2024, 16(21), 3669; https://doi.org/10.3390/cancers16213669 - 30 Oct 2024
Cited by 1 | Viewed by 1915
Abstract
Background: The invasion of glioblastoma cells beyond the visible tumor margin depicted by conventional neuroimaging is believed to mediate recurrence and predict poor survival. Radiomic biomarkers that are associated with the direction and extent of tumor infiltration are, however, non-existent. Methods: Patients from [...] Read more.
Background: The invasion of glioblastoma cells beyond the visible tumor margin depicted by conventional neuroimaging is believed to mediate recurrence and predict poor survival. Radiomic biomarkers that are associated with the direction and extent of tumor infiltration are, however, non-existent. Methods: Patients from a single center with newly diagnosed glioblastoma (n = 7) underwent preoperative Q-space magnetic resonance imaging (QSI; 3T, 64 gradient directions, b = 1000 s/mm2) between 2018 and 2019. Tumors were manually segmented, and patterns of inter-voxel coherence spatially intersecting each segmentation were generated to represent tumor-associated tractography. One patient additionally underwent regional biopsy of diffusion tract- versus non-tract-associated tissue during tumor resection for RNA sequencing. Imaging data from this cohort were compared with a historical cohort of n = 66 glioblastoma patients who underwent similar QSI scans. Associations of tractography-derived metrics with survival were assessed using t-tests, linear regression, and Kaplan–Meier statistics. Patient-derived glioblastoma xenograft (PDX) mice generated with the sub-hippocampal injection of human-derived glioblastoma stem cells (GSCs) were scanned under high-field conditions (QSI, 7T, 512 gradient directions), and tumor-associated tractography was compared with the 3D microscopic reconstruction of immunostained GSCs. Results: In the principal enrollment cohort of patients with glioblastoma, all cases displayed tractography patterns with tumor-intersecting tract bundles extending into brain parenchyma, a phenotype which was reproduced in PDX mice as well as in a larger comparison cohort of glioblastoma patients (n = 66), when applying similar methods. Reconstructed spatial patterns of GSCs in PDX mice closely mirrored tumor-associated tractography. On a Kaplan–Meier survival analysis of n = 66 patients, the calculated intra-tumoral mean diffusivity predicted the overall survival (p = 0.037), as did tractography-associated features including mean tract length (p = 0.039) and mean projecting tract length (p = 0.022). The RNA sequencing of human tissue samples (n = 13 tumor samples from a single patient) revealed the overexpression of transcripts which regulate cell motility in tract-associated samples. Conclusions: QSI discriminates tumor-specific patterns of inter-voxel coherence believed to represent white matter pathways which may be susceptible to glioblastoma invasion. These findings may lay the groundwork for future work on therapeutic targeting, patient stratification, and prognosis in glioblastoma. Full article
(This article belongs to the Special Issue Functional Neuro-Oncology (2nd Edition) )
Show Figures

Figure 1

15 pages, 3292 KB  
Article
Matching-to-Sample Task Training of a Killer Whale (Orcinus orca)
by Ayumu Santa, Koji Kanda, Tomoya Kako, Momoko Miyajima and Ikuma Adachi
Animals 2024, 14(6), 821; https://doi.org/10.3390/ani14060821 - 7 Mar 2024
Viewed by 2894
Abstract
Matching-to-sample tasks have been a useful method in visual cognitive studies on non-human animals. The use of touch panels in matching-to-sample tasks has contributed to cognitive studies on terrestrial animals; however, there has been a difficulty in using these devices underwater, which is [...] Read more.
Matching-to-sample tasks have been a useful method in visual cognitive studies on non-human animals. The use of touch panels in matching-to-sample tasks has contributed to cognitive studies on terrestrial animals; however, there has been a difficulty in using these devices underwater, which is one of the factors that has slowed the progress of visual studies on underwater animals. Cetaceans (e.g., dolphins and whales) are highly adapted to underwater environments, and further studies on their cognitive abilities are needed to advance our understanding of the interactions between environmental factors and the evolution of cognitive abilities. In this study, we aimed to develop a new experimental method in which a captive killer whale performed a matching-to-sample task using a monitor shown through an underwater window as if a touch panel were used. In order to confirm the usefulness of this method, one simple experiment on mirror image discrimination was conducted, and the pairs with mirror images were shown to be more difficult to identify than the pairs with other normal images. The advantages of using this method include (1) simplicity in the devices and stimuli used in the experiments, (2) appropriate and rigorous experimental control, (3) the possibility of increasing the number of individuals to be tested and interspecies comparisons, and (4) contributions to animal welfare. The use of this method solves some of the problems in previous visual cognitive studies on cetaceans, and it suggests the further possibility of future comparative cognitive studies. It is also expected to contribute to animal welfare in terms of cognitive enrichment, and it could help with the proposal of new exhibition methods in zoos and aquariums. Full article
(This article belongs to the Special Issue Advances in Marine Mammal Cognition and Cognitive Welfare)
Show Figures

Figure 1

14 pages, 1610 KB  
Article
An Orientation-Aware Attention Network for Person Re-Identification
by Dongshu Xu, Jun Chen and Xiaoyu Chai
Electronics 2024, 13(5), 910; https://doi.org/10.3390/electronics13050910 - 27 Feb 2024
Cited by 2 | Viewed by 1541
Abstract
Humans always identify persons through their characteristics, salient attributes, and these attributes’ locations on the body. Most person re-identification methods focus on global and local features corresponding to the former two discriminations, cropping person images into horizontal strips to obtain coarse locations of [...] Read more.
Humans always identify persons through their characteristics, salient attributes, and these attributes’ locations on the body. Most person re-identification methods focus on global and local features corresponding to the former two discriminations, cropping person images into horizontal strips to obtain coarse locations of body parts. However, discriminative clues corresponding to location differences cannot be discovered, so persons with similar appearances are often confused because of their alike components. To address the above problem, we introduce pixel-wise relative positions for the invariance of their orientations in viewpoint changes. To cope with the scale change of relative position, we combine relative positions with self-attention modules that perform on multi-level features. Moreover, in the data augmentation stage, mirrored images are given new labels due to the conversion of the relative position along a horizontal orientation and change in visual chirality. Extensive experiments on four challenging benchmarks demonstrate that the proposed approach shows its superiority and effectiveness in discovering discriminating features. Full article
(This article belongs to the Special Issue Applications of Deep Neural Network for Smart City)
Show Figures

Figure 1

26 pages, 1817 KB  
Article
A Multi-Purpose Shallow Convolutional Neural Network for Chart Images
by Filip Bajić, Ognjen Orel and Marija Habijan
Sensors 2022, 22(20), 7695; https://doi.org/10.3390/s22207695 - 11 Oct 2022
Cited by 12 | Viewed by 3168
Abstract
Charts are often used for the graphical representation of tabular data. Due to their vast expansion in various fields, it is necessary to develop computer algorithms that can easily retrieve and process information from chart images in a helpful way. Convolutional neural networks [...] Read more.
Charts are often used for the graphical representation of tabular data. Due to their vast expansion in various fields, it is necessary to develop computer algorithms that can easily retrieve and process information from chart images in a helpful way. Convolutional neural networks (CNNs) have succeeded in various image processing and classification tasks. Nevertheless, the success of training neural networks in terms of result accuracy and computational requirements requires careful construction of the network layers’ and networks’ parameters. We propose a novel Shallow Convolutional Neural Network (SCNN) architecture for chart-type classification and image generation. We validate the proposed novel network by using it in three different models. The first use case is a traditional SCNN classifier where the model achieves average classification accuracy of 97.14%. The second use case consists of two previously introduced SCNN-based models in parallel, with the same configuration, shared weights, and parameters mirrored and updated in both models. The model achieves average classification accuracy of 100%. The third proposed use case consists of two distinct models, a generator and a discriminator, which are both trained simultaneously using an adversarial process. The generated chart images are plausible to the originals. Extensive experimental analysis end evaluation is provided for the classification task of seven chart classes. The results show that the proposed SCNN is a powerful tool for chart image classification and generation, comparable with Deep Convolutional Neural Networks (DCNNs) but with higher efficiency, reduced computational time, and space complexity. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

12 pages, 270 KB  
Review
Bilaterally Symmetrical: To Be or Not to Be?
by Michael C. Corballis
Symmetry 2020, 12(3), 326; https://doi.org/10.3390/sym12030326 - 25 Feb 2020
Cited by 23 | Viewed by 14693
Abstract
We belong to a clade of species known as the bilateria, with a body plan that is essentially symmetrical with respect to left and right, an adaptation to the indifference of the natural world to mirror-reflection. Limbs and sense organs are in bilaterally [...] Read more.
We belong to a clade of species known as the bilateria, with a body plan that is essentially symmetrical with respect to left and right, an adaptation to the indifference of the natural world to mirror-reflection. Limbs and sense organs are in bilaterally symmetrical pairs, dictating a high degree of symmetry in the brain itself. Bilateral symmetry can be maladaptive, though, especially in the human world where it is important to distinguish between left and right sides, and between left-right mirror images, as in reading directional scripts. The brains of many animals have evolved asymmetries, often but not exclusively in functions not dependent on sensory input or immediate reaction to the environment. Brain asymmetries in humans have led to exaggerate notions of a duality between the sides of the brain. The tradeoff between symmetry and asymmetry results in individual differences in brain asymmetries and handedness, contributing to a diversity of aptitude and divisions of labor. Asymmetries may have their origin in fundamental molecular asymmetries going far back in biological evolution. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Brain Behavior and Perception)
18 pages, 4357 KB  
Article
Exploring Bioequivalence of Dexketoprofen Trometamol Drug Products with the Gastrointestinal Simulator (GIS) and Precipitation Pathways Analyses
by Marival Bermejo, Gislaine Kuminek, Jozef Al-Gousous, Alejandro Ruiz-Picazo, Yasuhiro Tsume, Alfredo Garcia-Arieta, Isabel González-Alvarez, Bart Hens, Deanna Mudie, Gregory E. Amidon, Nair Rodriguez-Hornedo and Gordon L. Amidon
Pharmaceutics 2019, 11(3), 122; https://doi.org/10.3390/pharmaceutics11030122 - 15 Mar 2019
Cited by 21 | Viewed by 7080
Abstract
The present work aimed to explain the differences in oral performance in fasted humans who were categorized into groups based on the three different drug product formulations of dexketoprofen trometamol (DKT) salt—Using a combination of in vitro techniques and pharmacokinetic analysis. The non-bioequivalence [...] Read more.
The present work aimed to explain the differences in oral performance in fasted humans who were categorized into groups based on the three different drug product formulations of dexketoprofen trometamol (DKT) salt—Using a combination of in vitro techniques and pharmacokinetic analysis. The non-bioequivalence (non-BE) tablet group achieved higher plasma Cmax and area under the curve (AUC) than the reference and BE tablets groups, with only one difference in tablet composition, which was the presence of calcium monohydrogen phosphate, an alkalinizing excipient, in the tablet core of the non-BE formulation. Concentration profiles determined using a gastrointestinal simulator (GIS) apparatus designed with 0.01 N hydrochloric acid and 34 mM sodium chloride as the gastric medium and fasted state simulated intestinal fluids (FaSSIF-v1) as the intestinal medium showed a faster rate and a higher extent of dissolution of the non-BE product compared to the BE and reference products. These in vitro profiles mirrored the fraction doses absorbed in vivo obtained from deconvoluted plasma concentration–time profiles. However, when sodium chloride was not included in the gastric medium and phosphate buffer without bile salts and phospholipids were used as the intestinal medium, the three products exhibited nearly identical concentration profiles. Microscopic examination of DKT salt dissolution in the gastric medium containing sodium chloride identified that when calcium phosphate was present, the DKT dissolved without conversion to the less soluble free acid, which was consistent with the higher drug exposure of the non-BE formulation. In the absence of calcium phosphate, however, dexketoprofen trometamol salt dissolution began with a nano-phase formation that grew to a liquid–liquid phase separation (LLPS) and formed the less soluble free acid crystals. This phenomenon was dependent on the salt/excipient concentrations and the presence of free acid crystals in the salt phase. This work demonstrated the importance of excipients and purity of salt phase on the evolution and rate of salt disproportionation pathways. Moreover, the presented data clearly showed the usefulness of the GIS apparatus as a discriminating tool that could highlight the differences in formulation behavior when utilizing physiologically-relevant media and experimental conditions in combination with microscopy imaging. Full article
Show Figures

Figure 1

18 pages, 443 KB  
Article
The Perception of Symmetry in Depth: Effect of Symmetry Plane Orientation
by Bart Farell
Symmetry 2015, 7(2), 336-353; https://doi.org/10.3390/sym7020336 - 3 Apr 2015
Cited by 4 | Viewed by 6938
Abstract
The visual system is sensitive to symmetries in the frontoparallel plane, and bilateral symmetry about a vertical axis has a particular salience. However, these symmetries represent only a subset of the symmetries realizable in three-dimensional space. The retinal image symmetries formed when viewing [...] Read more.
The visual system is sensitive to symmetries in the frontoparallel plane, and bilateral symmetry about a vertical axis has a particular salience. However, these symmetries represent only a subset of the symmetries realizable in three-dimensional space. The retinal image symmetries formed when viewing natural objects are typically the projections of three-dimensional objects—animals, for example—that have a symmetry in depth. To characterize human sensitivity to depth symmetry, experiments measured observers’ ability to discriminate stereo displays that were symmetrically distributed in depth and those that were asymmetrically distributed. Disparity values were distributed about one of four planes passing through the z-axis and differing in frontoparallel orientation. Asymmetrical patterns were generated by perturbing one of these disparities. Symmetrical-asymmetrical discrimination thresholds were lowest for symmetry about the vertical plane and highest for the horizontal plane. Thresholds for discriminating repetitions and non-repetitions of depth values did not differ across the four planes, whereas discriminations for depth gradients differed from both the symmetry and repetition cases. The heightened sensitivity to symmetry in depth about the vertical plane is a 3-D analog of 2-D mirror-image symmetry performance and could be its source. Full article
(This article belongs to the Special Issue Symmetry: Theory and Applications in Vision)
Show Figures

Back to TopTop