Asymmetry of Motor Behavior and Sensory Perception: Which Comes First?
Abstract
:1. Introduction
2. Development and Lateralization in Humans
3. Studying Embryonic Development in a Model Species
4. Asymmetry of Development of the Chick Embryo
5. Comparing Species
6. Conclusions
Funding
Conflicts of Interest
References
- Annett, M. Left, Right, Hand and Brain: The Right Shift Theory; Erlbaum: London, UK, 1985. [Google Scholar]
- McManus, C. Half a century of handedness research: Myths, truths; fictions, fact; backwards, but mostly forwards. Brain Neurosci. Adv. 2019, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ocklenburg, S.; Beste, C.; Güntürkün, O. Handedness: A neurogenetic shift of perspective. Neurosci. Biobehav. Rev. 2013, 37, 2788–2793. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Güntürkün, O. The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries; Academic Press: London, UK, 2018. [Google Scholar]
- Güntürkün, O.; Ocklenburg, S. Ontogenesis of lateralization. Neuron 2017, 94, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Bishop, D.V.M. Cerebral asymmetry and language development: Cause, correlate, or consequence. Science 2013, 340, 1230531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiss, M.; Tymnik, G.; Kögler, W.; Reiss, G. Laterality of hand, foot, eye, and ear in twins. Laterality 1999, 4, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Corballis, M.C. The evolution of lateralized brain circuits. Front. Psychol. 2017, 8, 1021. [Google Scholar] [CrossRef] [PubMed]
- Marzoli, D.; Lucafò, C.; Pagliara, A.; Cappuccio, R.; Brancucci, A.; Tommasi, L. Both right- and left-handers show a bias to attend others’ right arm. Exp. Brain Res. 2014, 233, 415–424. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Beste, C.; Arning, L.; Peterburs, J.; Güntürkün, O. The ontogenesis of language lateralization and its relation to handedness. Neurosci. Biobehav. Rev. 2014, 43, 191–198. [Google Scholar] [CrossRef]
- Badzakova-Trajkov, G.; Häberling, I.S.; Roberts, R.P.; Corballis, M.C. Complementarity and independent processes. PLoS ONE 2010, 5, e9682. [Google Scholar] [CrossRef]
- Badzakova-Trajkov, G.; Corballis, M.C.; Häberling, I.S. Complementarity or independence of hemispheric specializations? A brief review. Neuropsychologia 2016, 93, 386–393. [Google Scholar] [CrossRef]
- Rogers, L.J. Manual bias, behaviour, and cognition in common marmosets and other primates. In Cerebral Lateralization and Cognition: Evolutionary and Developmental Investigations of Behavioral Biases; Forrester, G., Hopkins, W.D., Hudry, K., Lindell, A.K., Eds.; Progress in Brain Research: PBR; Elsevier: Amsterdam, The Netherlands, 2018; Chapter 4; Volume 238, pp. 91–113. [Google Scholar]
- Hook, M.A.; Rogers, L.J. Development of hand preferences in marmosets (Callithrix jacchus) and effects of ageing. J. Comp. Psych. 2000, 114, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Hook, M.A.; Rogers, L.J. Visuospatial reaching preferences of common marmosets: An assessment of individual biases across a variety of tasks. J. Comp. Psychol. 2008, 122, 41–51. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, M.B.C.; Xavier, N.S.; da Silva, H.P.A.; de Oliveira, M.S.; Yamamoto, M.E. Hand preference study in marmosets (Callithrix jacchus) using food reaching tests. Primates 2001, 42, 57–66. [Google Scholar] [CrossRef]
- Rogers, L.J. Hand and paw preferences in relation to the lateralized brain. Philos. Trans. R. Soc. Lond. B 2009, 364, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Hook-Costigan, M.A.; Rogers, L.J. Lateralization of hand, mouth and eye use in the common marmoset (Callithrix jacchus). Folia Primatologica 1995, 64, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Hook-Costigan, M.A.; Rogers, L.J. Eye preferences in common marmosets (Callithrix jacchus): Influence of age, stimulus, and hand preference. Laterality 1998, 3, 109–130. [Google Scholar] [CrossRef]
- MacNeilage, P.; Rogers, L.J.; Vallortigara, G. Origins of the left and right brain. Sci. Am. 2009, 301, 60–67. [Google Scholar] [CrossRef]
- Braccini, S.N.; Lambeth, S.P.; Schapiro, S.J.; Fitch, W.T. Eye preferences in captive chimpanzees. Anim. Cogn. 2012, 15, 971–978. [Google Scholar] [CrossRef]
- Scheumann, M.; Zimmermann, E. Sex-specific asymmetries in communication sound perception are not related to hand preference in an early primate. BMC Biol. 2008, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Gorrie, C.A.; Waite, P.M.E.; Rogers, L.J. Correlations between hand preference and cortical thickness in the secondary somatosensory (SII) cortex. Behav. Neurosci. 2008, 122, 1343–1351. [Google Scholar] [CrossRef] [Green Version]
- Buckingham, G.; Carey, D.P. Attentional asymmetries – cause or consequence of human right handedness? Front. Psychol. 2014, 5, 1587. [Google Scholar] [CrossRef] [Green Version]
- Uomini, N.T.; Ruck, L. Manual laterality and cognition through evolution: An archeological perspective. Prog. Brain Res. 2018, 238, 295–323. [Google Scholar]
- Ruck, L. Manual praxis in stone-tool manufacture: Implications for language evolution. Brain Lang. 2014, 139, 68–83. [Google Scholar] [CrossRef]
- de Kovel, C.G.F.; Ligo, S.; Karelbach, G.; Ju, J.; Cheng, G.; Fisher, S.; Francks, C. Left-right asymmetry of maturation rates in human embryonic neural development. Biol. Psychiatry 2017, 82, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Hepper, P.G.; Shahidullah, S.; White, R. Handedness in the human fetus. Neuropsychologia 1991, 29, 1107–1111. [Google Scholar] [CrossRef]
- Hepper, P.G.; McCartney, G.R.; Shannon, E.A. Lateralised behavior in first trimester human foetuses. Neuropsychologia 1998, 36, 531–534. [Google Scholar] [CrossRef]
- McCartney, G.; Hepper, P. Development of lateralized behavior in the human fetus from 12 to 27 weeks’ gestation. Dev. Med. Child Neurol. 1999, 41, 83–86. [Google Scholar] [CrossRef]
- Preis, S.; Jancke, L.; Schmitz-Hillebrecht, J.; Steinmetz, H. Child age and planum temporale asymmetry. Brain Cogn. 1999, 40, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Corballis, M.C. Early signs of brain asymmetry. Trends Cogn. Sci. 2013, 17, 554–555. [Google Scholar] [CrossRef]
- Corballis, M.C. Left brain, right brain: Facts and fantasies. PLoS Biol. 2014, 12, e1001767. [Google Scholar] [CrossRef] [Green Version]
- Hepper, P.G.; Wells, D.L.; Lynch, C. Prenatal thumb sucking is related to postnatal handedness. Neuropsychologia 2005, 43, 313–315. [Google Scholar] [CrossRef] [PubMed]
- Ververs, I.A.; de Vries, J.I.; van Geijin, H.P.; Hopkins, B. Prenatal head position from 12–38 weeks. I. Developmental aspects. Early Hum. Dev. 1994, 39, 83–91. [Google Scholar] [CrossRef]
- Konishi, Y.; Mikawa, H.; Suzuki, J. Asymmetrical head turning of preterm infants: Some effects on later postural and functional lateralities. Dev. Med. Child Neurol. 1986, 28, 450–457. [Google Scholar] [CrossRef]
- Karim, A.K.M.R.; Proulx, M.J.; Likova, L.T. Anticlockwise or clockwise? A dynamic Perception-Action-Laterality model for directionality bias in visuospatial functioning. Neurosci. Biobehav. Rev. 2016, 68, 669–693. [Google Scholar] [CrossRef] [Green Version]
- Klöppel, S.; van Eimeren, T.; Glauche, V.; Vongerichten, A.; Münchau, A.; Frackowiak, R.S.; Büchel, C.; Weiller, C.; Siebner, H.R. The effect of handedness on cortical motor activation during simple bilateral movements. Neuroimage 2007, 34, 274–280. [Google Scholar] [CrossRef]
- Schmitz, J.; Lor, S.; Klose, R.; Güntürkün, O.; Ocklenburg, S. The functional genetics of handedness and language lateralization: Insights from gene ontology, pathway and disease association analyses. Front. Psychol. 2017, 8, 1144. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.D.; Cantalupo, C. Handedness in chimpanzees (Pan troglodytes) is associated with asymmetries of the primary motor cortex but not with homologous language areas. Behav. Neurosci. 2004, 118, 1176–1183. [Google Scholar] [CrossRef] [Green Version]
- Lickliter, R. The integrated development of sensory organization. Clin. Perinatol. 2011, 38, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Hendrickson, A. Development of retinal layers in prenatal human retina. Am. J. Ophthal. 2016, 161, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Birch, E.E.; O’Connor, A.R. Preterm birth and visual development. Semin. Neonatol. 2001, 6, 487–497. [Google Scholar] [CrossRef]
- Eswaran, H.; Lopwery, C.L.; Wilson, J.D.; Murphy, P.; Preissl, H. Functional development of the visual system in human fetus using magnetoencephalography. Exp. Neurol. 2004, 190 (Suppl. 1), 52–58. [Google Scholar] [CrossRef] [PubMed]
- Schöpf, V.; Schlegl, T.; Jakab, A.; Kasprian, G.; Woitek, R.M.; Prayer, D.; Langs, D. The relationship between eye movement and vision develops before birth. Front. Hum. Neurosci. 2014, 8, 775. [Google Scholar] [PubMed] [Green Version]
- Kiuchi, M.; Nagata, N.; Ikeno, S.; Terakawa, N. The relationship between the response to external light stimulation and behavioural states in the human fetus: How it differs from vibroacoustic stimulation. Early Hum. Dev. 2000, 58, 153–165. [Google Scholar] [CrossRef]
- Reid, V.M.; Dunn, K.; Young, R.J.; Amu, J.; Donovan, T.; Reissland, N. The human fetus preferentially engages with face-like visual stimuli. Curr. Biol. 2017, 27, 1825–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caval-Holme, F.; Feller, M.B. Gap junction coupling shapes the encoding of light in the developing retina. Curr. Biol. 2019, 29, 4024–4035. [Google Scholar] [CrossRef]
- Rao, S.; Chun, C.; Fan, J.; Kofron, M.; Yang, M.B.; Hegde, R.S.; Ferrara, N.; Copenhagen, D.R.; Lang, R.A. A direct melanopsin-dependent fetal light response regulates mouse eye development. Nature 2013, 494, 243–247. [Google Scholar] [CrossRef] [Green Version]
- Lessard, N.; Paré, M.; Lepore, F.; Lassonde, M. Early-blind human subjects localize sound sources better than sighted subjects. Nature 1998, 395, 278–280. [Google Scholar] [CrossRef]
- Bavelier, D.; Neville, H.J. Cross-modal plasticity: Where and how? Nat. Rev. Neurosci. 2004, 3, 443–452. [Google Scholar] [CrossRef]
- Buiatti, M.; di Giorgio, E.; Piazza, M.; Polloni, C.; Menna, G.; Taddei, F.; Baldo, E.; Vallortigara, G. Cortical route for facelike pattern processing in human newborns. Proc. Nat. Acad. Sci. USA 2019, 116, 4625–4630. [Google Scholar] [CrossRef] [Green Version]
- Ververs, I.A.; de Vries, J.I.; van Geijin, H.P.; Hopkins, B. Prenatal head position from 12–38 weeks. II. The effects of foetal orientation and placental localization. Early Hum. Dev. 1994, 39, 93–100. [Google Scholar] [CrossRef]
- Michel, G.F. Right-handedness: A consequence of infant supine head-orientation preference? Science 1981, 212, 685–687. [Google Scholar] [CrossRef] [Green Version]
- Michel, G.F.; Harkins, D.A. Postural and lateral asymmetries in the ontogeny of handedness during infancy. Dev. Psychobiol. 1986, 19, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Ferre, C.L.; Babik, I.; Michel, G. A perspective on the development of hemispheric specialization, infant handedness, and cerebral palsy. Cortex 2020, 127, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Previc, F.H. A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychol. Rev. 1991, 98, 299–334. [Google Scholar] [CrossRef] [PubMed]
- Previc, F.H. Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behav. Brain Sci. 1990, 13, 519–542. [Google Scholar] [CrossRef]
- Rogers, L.J.; Vallortigara, G.; Andrew, R.J. Divided Brains: The Biology and Behaviour of Brain Asymmetries; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Vallortigara, G.; Rogers, L.J. A function of the bicameral mind. Cortex 2020, 124, 274–285. [Google Scholar] [CrossRef]
- Ocklenburg, S. Güntürkün, OHemispheric asymmetries: The comparative view. Front. Psychol. 2012, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Vallortigara, G. Comparative neuropsychology of the dual brain: A stroll through left and right animals’ perceptual worlds. Brain Lang. 2000, 73, 189–219. [Google Scholar] [CrossRef]
- Rogers, L.J. Light input and the reversal of functional lateralization in the chicken brain. Behav. Brain Res. 1990, 38, 211–221. [Google Scholar] [CrossRef]
- Vallortigara, G.; Chiandetti, C.; Sovrano, V.A. Brain asymmetry (animal). WIREs Cogn. Sci. 2011, 2, 146–157. [Google Scholar] [CrossRef]
- Freeman, B.M.; Vince, M.A. Development of the Avian Embryo: A Behavioural and Physiological Study; Chapman and Hall: London, UK, 1974. [Google Scholar]
- Tolhurst, B. Development of the chick embryo in relation to the shell, yolk, albumen and extra-embryonic membranes. In Development of the Avian Embryo: A Behavioural and Physiological Study; Freeman, B.M., Vince, M.A., Eds.; Chapman and Hall: London, UK, 1974; Appendix 2. [Google Scholar]
- Thanos, S.; Bonhoeffer, F. Axonal arborization in the developing chick retinotectal system. J. Comp. Neurol. 1987, 261, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Chiandetti, C.; Lemaire, B.S.; Versace, E.; Vallortigara, G. Early- and late-light embryonic stimulation modulates similarly chicks’ ability to filter out distractors. Symmetry 2017, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.J.; Sink, H.S. Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken, and reversal of its direction by light exposure. Exp. Brain Res. 1988, 70, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J.; Bolden, S.W. Light-dependent development and asymmetry of visual projections. Neurosci. Lett. 1991, 121, 63–67. [Google Scholar] [CrossRef]
- Deng, C.; Rogers, L.J. Differential contributions of the two visual pathways to functional lateralization in chicks. Behav. Brain Res. 1997, 87, 173–182. [Google Scholar] [CrossRef]
- Rogers, L.J.; Deng, C. Light experience and lateralization of the two visual pathways in the chick. Behav. Brain Res. 1999, 98, 277–287. [Google Scholar] [CrossRef]
- Rogers, L.J.; Anson, J.M. Lateralisation of function in the chicken fore-brain. Pharm. Biochem. Behav. 1979, 10, 679–686. [Google Scholar] [CrossRef]
- Rogers, L.J. Light experience and asymmetry of brain function in chickens. Nature 1982, 297, 223–225. [Google Scholar] [CrossRef]
- Chiandetti, C.; Vallortigara, G. Effects of embryonic light stimulation on the ability to discriminate left from right in the domestic chick. Behav. Brain Res. 2009, 198, 240–246. [Google Scholar] [CrossRef]
- Chiandetti, C. Pseudoneglect and embryonic light stimulation in the avian brain. Behav. Neurosci. 2011, 125, 775–782. [Google Scholar] [CrossRef]
- Zappia, J.V.; Rogers, L.J. Light experience during development affects asymmetry of forebrain function in chickens. Dev. Brain Res. 1983, 11, 93–106. [Google Scholar] [CrossRef]
- Rogers, L.J. Development and function of lateralization in the avian brain. Brain Res. Bull. 2008, 76, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.J. The Development of Brain and Behaviour in the Chicken; CAB International: Oxon, UK, 1995. [Google Scholar]
- Chiandetti, C.; Galliussi, J.; Andrew, R.J.; Vallortigara, G. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Sci. Rep. 2013, 3, 2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiandetti, C.; Vallortigara, G. Distinct effect of early and late embryonic light-stimulation on chicks’ lateralization. Neuroscience 2019, 414, 1–7. [Google Scholar] [CrossRef]
- Chiandetti, C. Manipulation of strength of cerebral lateralization via embryonic light stimulation in birds. In Lateralized Brain Functions: Methods in Human and Non-Human Species; Rogers, L.J., Vallortigara, G., Eds.; Neuromethods: New York, NY, USA, 2017; Volume 122, pp. 611–631. [Google Scholar]
- Manca, A.; Capsoni, S.; Di Luzio, A.; Vignone, D.; Malerbra, F.; Paoletti, F.; Brandi, R.; Arisi, I.; Cattaneo, A.; Levi-Montalcini, R. Nerve growth factor regulates axial rotation during early stages of chick embryo development. Proc. Natl. Acad. Sci. USA 2012, 109, 2009–2014. [Google Scholar] [CrossRef] [Green Version]
- Petrazzini, M.E.M.; Sovrano, V.; Vallortigara, G.; Messina, A. Brain and behavioral asymmetry: A lesson from fish. Front. Neuroanat. 2020, 14, 11. [Google Scholar] [CrossRef]
- Doh, S.T.; Hao, H.; Loh, S.C.; Patel, T.; Tawil, H.Y.; Chen, D.K.; Pashkova, A.; Shen, A.; Wang, H.; Cai, L. Analysis of retinal development in chick embryo by immunohistochemistry and in ovo electroporation techniques. BMC Dev. Biol. 2010, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- De Long, G.R.; Coulombre, A.J. Development of the retinotectal topographic projection in the chick embryo. Exp. Neurol. 1965, 13, 351–363. [Google Scholar] [CrossRef]
- Hamburger, V.; Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morph. 1951, 88, 49–92. [Google Scholar] [CrossRef]
- Casey, M.B.; Martino, C. Asymmetrical hatching behaviors influence the development of postnatal laterality in domestic chicks (Gallus gallus). Dev. Psychobiol. 2000, 34, 1–12. [Google Scholar] [CrossRef]
- Casey, M.B. Asymmetrical hatching behaviors: The development of postnatal motor laterality in three precocial bird species. Dev. Psychobiol. 2005, 47, 123–125. [Google Scholar] [CrossRef]
- Casey, M.B.; Sleigh, M.J. Cross-species investigations of prenatal experience, hatching behavior, and postnatal behavioral laterality. Dev. Psychobiol. 2001, 35, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Casey, M.B. and Lickliter, R. Prenatal visual experience influences the development of turning bias in bobwhite quail chicks (Colinus virginianus). Dev. Psychobiol. 1998, 32, 327–338. [Google Scholar] [CrossRef]
- Casey, M.B.; Sleigh, M.J. Prenatal visual experience induces postnatal motor laterality in Japanese quail chicks (Coturnix coturnix japonica). Dev. Psychobiol. 2014, 56, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Vallortigara, G.; Andrew, R.J. Olfactory lateralization in the chick. Neuropsychologia 1994, 32, 417–423. [Google Scholar] [CrossRef]
- Rogers, L.J.; Andrew, R.J.; Burne, T.H.J. Light exposure of the embryo and development of behavioural lateralisation in chicks: I. Olfactory responses. Behav. Brain Res. 1998, 97, 195–200. [Google Scholar] [CrossRef]
- Honeycutt, H.; Lickliter, R. Order-dependent timing of unimodal and multimodal stimulation affects prenatal auditory learning in bobwhite quail embryos. Dev. Psychobiol. 2001, 38, 1–10. [Google Scholar] [CrossRef]
- Banker, H.; Lickliter, R. Effects of early and delayed visual experience on intersensory development in bobwhite quail chicks. Dev. Psychobiol. 1993, 26, 155–170. [Google Scholar] [CrossRef]
- Rogers, L.J. Eye and ear preferences. In Lateralized Brain Functions: Methods in Human and Non-Human Species; Rogers, L.J., Vallortigara, G., Eds.; Neuromethods: New York, NY, USA, 2017; Volume 122, pp. 79–102. [Google Scholar]
- Siniscalchi, M. Olfactory lateralization. In Lateralized Brain Functions: Methods in Human and Non-Human Species; Rogers, L.J., Vallortigara, G., Eds.; Neuromethods: New York, NY, USA, 2017; Volume 122, pp. 103–120. [Google Scholar]
- Letzner, S.; Güntürkün, O.; Lor, S.; Pawlik, R.J.; Manns, M. Visuospatial attention in the lateralised brain of pigeons—A matter of ontogenetic light experiences. Sci. Rep. 2017, 7, 15547. [Google Scholar] [CrossRef] [Green Version]
- Manns, M.; Ströckens, F. Functional and structural comparison of visual lateralization in birds—Similar but still different. Front. Psychol. 2014, 25, 5–206. [Google Scholar] [CrossRef] [Green Version]
- Letzner, S.; Patzke, N.; Verhaal, J.; Manns, M. Shaping a lateralized brain: Asymmetrical light experience modulates access to visual interhemispheric information in pigeons. Sci. Rep. 2014, 4, 4253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annett, M. Handedness and Brain Asymmetry: The Right Shift Theory; Psychology Press: New York, NY, USA, 2002. [Google Scholar]
- Andrew, R.J. The earliest origins and subsequent evolution of lateralization. In Comparative Vertebrate Lateralization; Rogers, L.J., Andrew, R.J., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 70–93. [Google Scholar]
- Karenina, K.; Giljov, A.; Ingram, J.; Rowntree, V.J.; Malashichev, Y. Lateralization of mother-infant interactions in a diverse range of mammal species. Nat. Ecol. Evol. 2017, 1, 0030. [Google Scholar] [CrossRef]
- Vallortigara, G. Right hemisphere advantage for social recognition in the chick. Neuropsychologica 1992, 30, 761–768. [Google Scholar] [CrossRef]
- d’Ingeo, S.; Quaranta, A.; Siniscalchi, M.; Stomp, M.; Coste, C.; Bagnard, C.; Hausberger, M.; Cousillas, H. Horses associate individual human voices with the valence of past interactions: A behavioural and electrophysiological study. Sci. Rep. 2019, 9, 11568. [Google Scholar] [CrossRef] [PubMed]
- Siniscalchi, M.; Quaranta, A.; Rogers, L.J. Hemispheric specialization in dogs for processing different acoustic stimuli. PLoS ONE 2008, 3, e3349. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.V.; Proops, L.; Grounds, K.; Wathan, J.; Scott, S.K.; McComb, K. Domestic horses (Equus caballus) discriminate between negative and positive human nonverbal vocalisations. Sci. Rep. 2018, 8, 13052. [Google Scholar] [CrossRef]
- Versace, E.; Vallortigara, G. Forelimb preferences in human beings and other species: Multiple models for testing hypotheses on lateralization. Front. Psychol. 2015, 6, 233. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogers, L.J. Asymmetry of Motor Behavior and Sensory Perception: Which Comes First? Symmetry 2020, 12, 690. https://doi.org/10.3390/sym12050690
Rogers LJ. Asymmetry of Motor Behavior and Sensory Perception: Which Comes First? Symmetry. 2020; 12(5):690. https://doi.org/10.3390/sym12050690
Chicago/Turabian StyleRogers, Lesley J. 2020. "Asymmetry of Motor Behavior and Sensory Perception: Which Comes First?" Symmetry 12, no. 5: 690. https://doi.org/10.3390/sym12050690