An Evaluation of Symmetries in Ground Reaction Forces during Self-Paced Single- and Dual-Task Treadmill Walking in the Able-Bodied Men
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Data Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nasirzade, A.; Sadeghi, H.; Mokhtarinia, H.R.; Rahimi, A. A review of selected factors affecting gait symmetry. Phys. Treat. Specif. Phys. Ther. 2017, 7, 3–12. [Google Scholar] [CrossRef]
- Hsiao-Wecksler, E.T.; Polk, J.D.; Rosengren, K.S.; Sosnoff, J.J.; Hong, S. A review of new analytic techniques for quantifying symmetry in locomotion. Symmetry 2010, 2, 1135–1155. [Google Scholar] [CrossRef]
- Ankarali, M.M.; Sefati, S.; Madhav, M.; Long, A.; Bastian, A.; Cowan, N. Walking dynamics are symmetric (enough). J. R. Soc. Interface 2015, 12, 20150209. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, B. The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm. Biomed Res. Int. 2015, 2015, 528971. [Google Scholar] [CrossRef] [PubMed]
- Toro, B.; Nester, C.; Farren, P. A review of observational gait assessment in clinical practice. Physiother. Theory Pract. 2009, 19, 137–149. [Google Scholar] [CrossRef]
- Baker, R.; Esquenazi, A.; Benedetti, M.G.; Desloovere, K. Gait analysis: Clinical facts. Eur. J. Phys. Rehabil. Med. 2016, 52, 560–574. [Google Scholar]
- Herzog, W.; Nigg, B.M.; Read, L.J.; Olsson, E. Asymmetries in ground reaction force patterns in normal human gait. Med. Sci. Sports Exerc. 1988, 21, 1689–1699. [Google Scholar] [CrossRef]
- Seeley, M.K.; Umberger, B.R.; Shapiro, R. A test of the functional asymmetry hypothesis in walking. Gait Posture 2008, 28, 24–28. [Google Scholar] [CrossRef]
- Giakas, G.; Baltzopoulos, V. Time and frequency domain analysis of ground reaction forces during walking: An investigation of variability and symmetry. Gait Posture 1997, 5, 189–197. [Google Scholar] [CrossRef]
- Forczek, W.; Staszkiewicz, R. An evaluation of symmetry in the lower limb joints during the able-bodied gait of women and men. J. Hum. Kinet. 2012, 35, 47–57. [Google Scholar] [CrossRef]
- Sadeghi, H. Local or global asymmetry in gait of people without impairments. Gait Posture 2003, 17, 197–204. [Google Scholar] [CrossRef]
- Burnett, D.R.; Campbell-Kyureghyan, N.H.; Cerrito, P.B.; Quesada, P.M. Symmetry of ground reaction forces and muscle activity in asymptomatic subjects during walking, sit-to-stand, and stand-to-sit tasks. J. Electromyogr. Kinesiol. 2011, 21, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Viteckova, S.; Kutilek, P.; Svoboda, Z.; Krupika, R.; Kauler, J.; Szabo, Z. Gait symmetry measures: A review of current and prospective methods. Biomed. Signal Process. Control 2018, 42, 89–100. [Google Scholar] [CrossRef]
- Jeleń, P.; Wit, A.; Dudziński, K.; Nolan, L. Expressing gait-line symmetry in able-bodied gait. Dyn. Med. 2008, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vaverka, F.; Elfmark, M.; Svoboda, Z.; Janura, M. System of gait analysis based on ground reaction force assessment. Acta Gymnica 2015, 45, 187–193. [Google Scholar] [CrossRef]
- Wang, Y.; Watanabe, K. Symmetry and variability of vertical ground reaction force and center of pressure in able-bodied gait. J. Appl. Biomech. 2012, 28, 473–478. [Google Scholar] [CrossRef]
- Plotnik, M.; Bartsch, R.P.; Zeev, A.; Giladi, N.; Hausdorff, J.M. Effects of walking speed on asymmetry and bilateral coordination of gait. Gait Posture 2013, 38, 864–869. [Google Scholar] [CrossRef]
- Al-Amri, M.; Al Balushi, H.; Mashabi, A. Intra-rater repeatability of gait parameters in healthy adults during self-paced treadmill-based virtual reality walking. Comput. Methods Biomech. Biomed. Engin. 2017, 20, 1669–1677. [Google Scholar] [CrossRef]
- Luigi Tesio, V.R. Gait analysis on split-belt force treadmills: Validation of an instrument. Am. J. Phys. Med. Rehabil. 2008, 87, 515–526. [Google Scholar] [CrossRef]
- Yogev-Seligmann, G.; Hausdorff, J.M.; Giladi, N. The role of executive function and attention in gait. Mov. Disord. 2008, 23, 329–342. [Google Scholar] [CrossRef]
- Mendel, T.; Barbosa, W.O.; Sasaki, A.C. Dual task training as a therapeutic strategy in neurologic physical therapy: A literature review. Acta Fisiátrica 2015, 22, 206. [Google Scholar] [CrossRef]
- Gillain, S.; Boutaayamou, M.; Schwartz, C.; Dardenne, N.; Bruyère, O.; Brüls, O.; Croisier, J.-L.; Salmon, E.; Reginster, J.-Y.; Garraux, G.; et al. Gait symmetry in the dual task condition as a predictor of future falls among independent older adults: A 2-year longitudinal study. Aging Clin. Exp. Res. 2019, 3, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Al-Yahya, E.; Dawes, H.; Smith, L.; Dennis, A.; Howells, K.; Cockburn, J. Cognitive motor interference while walking: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2011, 35, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Hollman, J.H.; Kovash, F.M.; Kubik, J.J.; Linbo, R.A. Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait Posture 2007, 26, 113–119. [Google Scholar] [CrossRef]
- Schaefer, S.; Lindenberger, U. Thinking while walking: Experienced high-heel walkers flexibly adjust their gait. Front. Psychol. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Yogev, G.; Plotnik, M.; Peretz, C.; Giladi, N.; Hausdorff, J.M. Gait asymmetry in patients with Parkinson’s disease and elderly fallers: When does the bilateral coordination of gait require attention? Exp. Brain Res. 2007, 177, 336–346. [Google Scholar] [CrossRef]
- Plotnik, M.; Giladi, N.; Hausdorff, J.M. Bilateral coordination of gait and Parkinson’s disease: The effects of dual tasking. J. Neurol. Neurosurg. Psychiatry 2009, 80, 347–350. [Google Scholar] [CrossRef]
- Ribeiro, T.S.; de Sousa, A.C.; de Lucena, L.C.; Santiago, L.M.; Lindquist, A.R. Does dual task walking affect gait symmetry in individuals with Parkinson’s disease? Eur. J. Physiother. 2018, 21, 8–14. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Axel, B.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Kimura, N.; van Deursen, R. The effect of visual dual-tasking interference on walking in healthy young adults. Gait Posture 2020, 79, 80–85. [Google Scholar] [CrossRef]
- Van den Bogert, A.J.; Geijtenbeek, T.; Even-Zohar, O.; Steenbrink, F.; Hardin, E.C. A real-time system for biomechanical analysis of human movement and muscle function. Med. Biol. Eng. Comput. 2013, 51, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Sloot, L.H.; van der Krogt, M.M.; Harlaar, J. Effects of adding a virtual reality environment to different modes of treadmill walking. Gait Posture 2014, 39, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Kileen, T.; Easthope, C.; Curt, A.; Bollinger, M.; Linnebank, M.; Zörner, B.; Filley, L. Familiarization with treadmill walking: How much is enough? Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Seltman, H. Experimental Design and Analysis. 2018. Available online: http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf (accessed on 28 November 2020).
- Nadkarni, N.K.; Zabjek, K.; Lee, B.; McIlroy, W.E.; Black, S.E. Effect of working memory and spatial attention tasks on gait in healthy young and older adults. Mot. Control 2010, 14, 195–210. [Google Scholar] [CrossRef][Green Version]
- Monk, A.F.; Jackson, D.; Nielsen, D.; Jefferies, E.; Olivier, P. N-backer: An auditory n-back task with automatic scoring of spoken responses. Behav. Res. Methods 2011, 43, 888–896. [Google Scholar] [CrossRef]
- Lövdén, M.; Schaefer, S.; Pohlmeyer, A.E.; Lindenberger, U. Walking variability and working-memory load in aging: A dual-process account relating cognitive control to motor control performance. J. Gerontol. B Psychol. Sci. Soc. Sci. 2008, 63, 121–128. [Google Scholar] [CrossRef]
- Liao, F.; Wang, J.; He, P. Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis. Med. Eng. Phys. 2008, 30, 299–310. [Google Scholar] [CrossRef]
- Robinson, R.O.; Herzog, W.; Nigg, B.M. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manip. Physiol. Ther. 1987, 10, 172–176. [Google Scholar]
- Liikavainio, T.; Isolehto, J.; Helminen, H.J.; Perttunen, J.; Lepola, V.; Kiviranta, I.; Arokoski, J.P.A.; Komi, P.V. Loading and gait symmetry during level and stair walking in asymptomatic subjects with knee osteoarthritis: Importance of quadriceps femoris in reducing impact force during heel strike? Knee 2007, 14, 231–238. [Google Scholar] [CrossRef]
- Yiou, E.; Caderby, T.; Delafontaine, A.; Fourcade, P.; Honeine, J.L. Balance control during gait initiation: State-of-the-art and research perspectives. World J. Orthop. 2017, 8, 815–828. [Google Scholar] [CrossRef]
- Paul, S.S.; Ada, L.; Canning, C.G. Automaticity of walking—Implications for physiotherapy practice. Phys. Ther. Rev. 2005, 10, 15–23. [Google Scholar] [CrossRef]
- Marasović, T.; Cecić, M.; Zanchi, V. Analysis and interpretation of ground reaction forces in normal gait. WSEAS Trans. Syst. 2009, 8, 1105–1114. [Google Scholar]
- Dos Santos, D.A.; Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. A data set with kinematic and ground reaction forces of human balance. PeerJ 2017, 5, e3626. [Google Scholar] [CrossRef] [PubMed]
- Yogev-Seligmann, G.; Giladi, N.; Gruendlinger, L.; Hausdorff, J.M. The contribution of postural control and bilateral coordination to the impact of dual tasking on gait. Exp. Brain Res. 2013, 226, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Owen, A.M.; McMillan, K.M.; Laird, A.R.; Bullmore, E. N-Back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 2005, 25, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Studer, M.; Winningham, R. Retraining automaticity: Recovering the procedural memory of walking after stroke. Phys. Med. Rehabil. Int. 2017, 4, 1125. [Google Scholar] [CrossRef][Green Version]




| Demographic Measure | Mean ± SD | Range |
|---|---|---|
| Age (years) | 34.00 ± 4.44 | 30–46 |
| Height (m) | 1.71 ± 0.06 | 1.58–1.82 |
| Weight (kg) | 76.88 ± 9.85 | 57.60–100.2 |
| BMI (kg/m2) | 26.17 ± 2.48 | 19.50–30.20 |
| Session 1 | Session 2 | Sessions Combined | t-Test p | 95%CI | ||||
|---|---|---|---|---|---|---|---|---|
| Mean ± SD | CV% | Mean ± SD | CV% | Difference ± SD | ||||
| Medial–lateral | FW | 0.862 ± 0.069 | 8.0 | 0.880 ± 0.059 | 6.7 | −0.018 ± 0.063 | 0.161 | −0.044 to 0.008 |
| DT1 | 0.861 ± 0.068 | 7.9 | 0.875 ± 0.069 | 7.9 | −0.015 ± 0.062 | 0.252 | −0.040 to 0.011 | |
| DT2 | 0.856 ± 0.069 | 8.1 | 0.863 ± 0.070 | 8.1 | −0.008 ± 0.066 | 0.562 | −0.035 to 0.019 | |
| Vertical | FW | 0.902 ± 0.044 | 4.9 | 0.893 ± 0.044 | 4.9 | 0.009 ± 0.054 | 0.421 | −0.014 to 0.031 |
| DT1 | 0.890 ± 0.044 | 4.9 | 0.879 ± 0.038 | 4.3 | 0.012 ± 0.036 | 0.116 | −0.003 to 0.027 | |
| DT2 | 0.885 ± 0.038 | 4.3 | 0.878 ± 0.037 | 4.2 | 0.007 ± 0.051 | 0.490 | −0.014 to 0.028 | |
| Anterior–posterior | FW | 0.847 ± 0.090 | 10.6 | 0.847 ± 0.102 | 12.0 | −0.001 ± 0.050 | 0.950 | −0.021 to 0.020 |
| DT1 | 0.850 ± 0.093 | 10.9 | 0.854 ± 0.112 | 13.1 | −0.003 ± 0.062 | 0.787 | −0.029 to 0.22 | |
| DT2 | 0.839 ± 0.101 | 12.0 | 0.845 ± 0.091 | 10.8 | −0.006 ± 0.049 | 0.553 | −0.026 to 0.014 | |
| Speed (m/s) | FW | 1.45 ± 0.157 | 9.0 | 1.48 ± 0.170 | 8.8 | −0.032 ± 0.117 | 0.187 | −0.080 to 0.017 |
| DT1 | 1.40 ± 0.139 | 9.7 | 1.45 ± 0.139 | 8.8 | −0.050 ± 0.107 | 0.027 * | −0.094 to −0.006 | |
| DT2 | 1.39 ± 0.182 | 9.6 | 1.45 ± 0.154 | 9.0 | −0.059 ± 0.134 | 0.038 * | −0.114 to −0.003 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Juaid, R.; Al-Amri, M. An Evaluation of Symmetries in Ground Reaction Forces during Self-Paced Single- and Dual-Task Treadmill Walking in the Able-Bodied Men. Symmetry 2020, 12, 2101. https://doi.org/10.3390/sym12122101
Al-Juaid R, Al-Amri M. An Evaluation of Symmetries in Ground Reaction Forces during Self-Paced Single- and Dual-Task Treadmill Walking in the Able-Bodied Men. Symmetry. 2020; 12(12):2101. https://doi.org/10.3390/sym12122101
Chicago/Turabian StyleAl-Juaid, Rawan, and Mohammad Al-Amri. 2020. "An Evaluation of Symmetries in Ground Reaction Forces during Self-Paced Single- and Dual-Task Treadmill Walking in the Able-Bodied Men" Symmetry 12, no. 12: 2101. https://doi.org/10.3390/sym12122101
APA StyleAl-Juaid, R., & Al-Amri, M. (2020). An Evaluation of Symmetries in Ground Reaction Forces during Self-Paced Single- and Dual-Task Treadmill Walking in the Able-Bodied Men. Symmetry, 12(12), 2101. https://doi.org/10.3390/sym12122101

