# Generic Existence of Solutions of Symmetric Optimization Problems

## Abstract

**:**

## 1. Introduction

**Theorem**

**1.**

## 2. An Auxiliary Result

**Lemma**

**1.**

**Proof.**

## 3. Proof of Theorem 1

## 4. Conclusions

## Funding

## Conflicts of Interest

## References

- Zaslavski, A.J. Optimization on Metric and Normed Spaces; Springer Optimization and Its Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Boulos, W.; Reich, S. Porosity results for two-set nearest and farthest point problems. Rend. Circ. Mat. Palermo
**2015**, 2, 493–507. [Google Scholar] - Ioffe, A.D.; Zaslavski, A.J. Variational principles and well-posedness in optimization and calculus of variations. SIAM J. Control Optim.
**2000**, 38, 566–581. [Google Scholar] - Peng, D.T.; Yu, J.; Xiu, N.H. Generic uniqueness of solutions for a class of vector Ky Fan inequalities. J. Optim. Theory Appl.
**2012**, 155, 165–179. [Google Scholar] - Peng, D.T.; Yu, J.; Xiu, N.H. Generic uniqueness theorems with some applications. J. Glob. Optim.
**2013**, 56, 713–725. [Google Scholar] [CrossRef] - Peng, L.; Li, C. Porosity and fixed points of nonexpansive set-valued maps. Set-Valued Var. Anal.
**2014**, 22, 333–348. [Google Scholar] [CrossRef] - Planiden, C.; Wang, X. Most convex functions have unique minimizers. J. Convex Anal.
**2016**, 23, 877–892. [Google Scholar] - Planiden, C.; Wang, X. Strongly convex functions, Moreau envelopes, and the generic nature of convex functions with strong minimizers. SIAM J. Optim.
**2016**, 26, 1341–1364. [Google Scholar] [CrossRef] [Green Version] - Zaslavski, A.J. Nonconvex Optimal Control and Variational Problems; Springer Optimization and Its Applications; Springer: Berlin/Heisenberg, Germany, 2013. [Google Scholar]
- Li, C. On well posed generalized best approximation problems. J. Approx. Theory
**2000**, 107, 96–108. [Google Scholar] [CrossRef] [Green Version] - Peng, L.; Li, C.; Yao, J.-C. Porosity results on fixed points for nonexpansive set-valued maps in hyperbolic spaces. J. Math. Anal. Appl.
**2015**, 428, 989–1004. [Google Scholar] - Reich, S.; Zaslavski, A.J. Genericity in Nonlinear Analysis; Developments in Mathematics; Springer: Berlin/Heisenberg, Germany, 2014. [Google Scholar]
- Vanderwerff, J. On the residuality of certain classes of convex functions. Pure Appl. Funct. Anal.
**2020**, 5, 791–806. [Google Scholar] - Wang, X. Most maximally monotone operators have a unique zero and a super-regular resolvent. Nonlinear Anal.
**2013**, 87, 69–82. [Google Scholar] [CrossRef] [Green Version] - Mizel, V.J.; Zaslavski, A.J. Anisotropic functions: A genericity result with crystallographic implications. ESAIM Control. Optim. Calculus Var.
**2004**, 10, 624–633. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zaslavski, A.J.
Generic Existence of Solutions of Symmetric Optimization Problems. *Symmetry* **2020**, *12*, 2004.
https://doi.org/10.3390/sym12122004

**AMA Style**

Zaslavski AJ.
Generic Existence of Solutions of Symmetric Optimization Problems. *Symmetry*. 2020; 12(12):2004.
https://doi.org/10.3390/sym12122004

**Chicago/Turabian Style**

Zaslavski, Alexander J.
2020. "Generic Existence of Solutions of Symmetric Optimization Problems" *Symmetry* 12, no. 12: 2004.
https://doi.org/10.3390/sym12122004