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Abstract: In this paper we study a class of symmetric optimization problems which is identified
with a space of objective functions, equipped with an appropriate complete metric. Using the Baire
category approach, we show the existence of a subset of the space of functions, which is a countable
intersection of open and everywhere dense sets, such that for every objective function from this
intersection the corresponding symmetric optimization problem possesses a solution.
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1. Introduction

Assume that (X, ρ) is a complete metric space. For each function f : X → R1 define

inf( f ) = inf{ f (x) : x ∈ X}.

For each x ∈ X and each nonempty set E ⊂ X define

ρ(x, E) = inf{ρ(x, y) : y ∈ E}.

Denote byMl the set of all lower semicontinuous and bounded from below functions f : X → R1.
We equip the setMl with the uniformity determined by the following base

E(ε) = {( f , g) ∈ Ml ×Ml : | f (x)− g(x)| ≤ ε for all x ∈ X},

where ε > 0. It is known that this uniformity is metrizable (by a metric d) and complete [1].
Denote byMc the set of all continuous functions f ∈ Ml . It is not difficult to see thatMc is a

closed subset ofMl .
Consider a minimization problem

f (x)→ min, x ∈ X,

where f ∈ Ml .
This problem has a solution when X is compact or when f satisfies a growth conditions and

bounded subsets of X are compact. When X does not satisfy a compactness assumption the existence
problem becomes more difficult and less understood. It is possible to overcome this difficulty applying
the Baire category approach. It turns out that this approach is useful in various fields of mathematics
(see, for example, [1–7]). According to the Baire category approach, a property is valid for a generic
(typical) point of a complete metric space (or it is valid generically) if the collection of all points
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of the space, which have this property, contains a Gδ everywhere dense subset of the metric space.
In particular, it is known that the optimization problem stated above (see [1,3,7,8] and the references
mentioned therein) can be solved generically (for a generic objective function). Namely, there exists a
set F ⊂Ml which is a countable intersection of open and everywhere dense sets such that for each
f ∈ F the minimization problem has a unique solution which is a limit of any minimizing sequence.
This result and its numerous extensions are collected in [1]. It should be mentioned that generic
existence results in optimal control and the calculus of variations are discussed in [9] while generic
results in nonlinear analysis are presented in [10–14]. In particular, Ref. [9] contains generic results
on the existence of solutions for large classes of optimal optimal control problems without convexity
assumptions, generic existence results for best approximation problems are presented in [2,10,12],
generic existence of fixed points for nonlinear operators is shown in [6,11,12] and the generic existence
of a unique zero of maximally monotone operators is shown in [14]. In the present paper our goal is to
obtain a generic existence of minimization problems with symmetry. This result is important because
has applications in crystallography [15].

Assume that a mapping T : X → X is continuous and the mapping T2 = T ◦ T is an identity
mapping in X:

T2(x) = x for all x ∈ X. (1)

This implies that T(X) = X, if x1, x2 ∈ X and T(x1) = T(x2), then x1 = x2 and that there exists
T−1 = T.

Denote byMT,l the set of all f ∈ Ml such that

f (T(x)) = f (x) for all x ∈ X. (2)

Clearly,MT,l is a closed subset ofMl . Set

MT,c =MT,l ∩Mc.

All the setsMT,l,MT,c andMc are equipped with the metric d. We consider a minimization problem

f (x)→ min, x ∈ X,

where f ∈ MT,l . Such problems with symmetric objective function have real world applications [15].
Note that the generic existence result for the space Ml does not give any information for its
subspaceMT,l .

In this paper, we prove the following result.

Theorem 1. Assume thatMT is eitherMT,l orMT,c. Then there is a subset F ⊂MT which is a countable
intersection of open and everywhere dense subsets of the spaceMT such that for every objective function f ∈ F
the two properties below hold:

(i) there is a point x f ∈ X for which

inf( f ) = f (x f ) = f (T(x f ))

and if a point z ∈ X satisfies the equation f (z) = inf( f ), then the inclusion z ∈ {x f , T(x f )} is true;
(ii) for every positive number ε, there exist a positive number δ and a neighborhood U of f ∈ Ml such that

for every function g ∈ U and every point z ∈ X for which

g(z) ≤ inf(g) + δ

the relation
min{ρ(z, {xg, T(xg)}), ρ(T(z), {xg, T(xg)})} ≤ ε
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is true.

This theorem is proved in Section 3 while Section 2 contains an auxiliary result. It should be
mentioned that the result stated above also holds for some closed subspaces of the spaceMT,l with
the same proof. This extension implies the main result of [15], obtained for some class of optimization
problems arising in crystallography with X = R1 and T(x) = −x, x ∈ R1, which gave us the
motivation for the result presented in this paper.

2. An Auxiliary Result

Lemma 1. Assume that f ∈ MT,l , ε ∈ (0, 1), γ > 0,

δ ∈ (0, 8−1εγ), (3)

x̄ ∈ X satisfies
f (x̄) ≤ inf( f ) + δ, (4)

f̄ (x) = f (x) + γ min{1, ρ(x, x̄), ρ(T(x), x̄)}, x ∈ X (5)

and that
U = {g ∈ Ml : ( f̄ , g) ∈ E(δ)}. (6)

Then f̄ ∈ MT,l , if f ∈ MT,c, then f̄ ∈ MT,c and for each g ∈ U and each z ∈ X satisfying

g(z) ≤ inf(g) + δ

the following inequality holds:
min{ρ(z, x̄), ρ(T(z), x̄)} < ε.

Proof. By (1), (2) and (5), for every x ∈ X,

f̄ (T(x)) = f (T(x)) + γ min{1, ρ(T(x), x̄), ρ(T2(x), x̄)}

= f (x) + γ min{1, ρ(x, x̄), ρ(T(x), x̄)} = f̄ (x).

Thus f̄ ∈ MT,l . Clearly, if f ∈ MT,c, then f̄ ∈ MT,c
Assume that

g ∈ U (7)

and that z ∈ X satisfies
g(z) ≤ inf(g) + δ. (8)

By (4)–(8),
f (z) + γ min{1, ρ(z, x̄), ρ(T(z), x̄)} = f̄ (z)

≤ g(z) + δ ≤ inf(g) + 2δ ≤ g(x̄) + 2δ

≤ f̄ (x̄) + 3δ = f (x̄) + 3δ ≤ inf( f ) + 4δ ≤ f (z) + 4δ

and
min{1, ρ(z, x̄), ρ(T(z), x̄)} ≤ 4δγ−1.

In view of the inequality above and (3),

min{ ρ(z, x̄), ρ(T(z), x̄)} ≤ 4δγ−1 < ε.

Lemma 1 is proved.
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3. Proof of Theorem 1

Let f ∈ MT and n be a natural number. By Lemma 1, there exist a nonempty open set U ( f , n) in
Ml , x( f , n) ∈ X and δ( f , n) > 0 such that

U ( f , n) ∩ {g ∈ MT : d( f , g) < n−1} 6= ∅ (9)

and that the following property holds:
(P1) for each g ∈ U ( f , n) and each z ∈ X which satisfies

g(z) ≤ inf(g) + δ( f , n) (10)

the inequality
min{ρ(z, x( f , n)), ρ(T(z), x( f , n))} < n−1 (11)

holds.
Define

F = [∩∞
p=1 ∪ {U ( f , n) : f ∈ MT , n ≥ p is an integer }] ∩MT . (12)

Clearly, F is a countable intersection of open everywhere dense sets inMT . Let

g ∈ F . (13)

Assume that {zi}∞
i=1 ⊂ X satisfies

lim
i→∞

g(zi) = inf(g). (14)

Let p be a natural number. By (12) and (13), there exist f ∈ MT and an integer n ≥ p such that

g ∈ U ( f , n). (15)

Property (P1) and (15) imply that for all large enough natural numbers i,

min{ρ(zi, x( f , n)), ρ(T(zi), x( f , n))} ≤ n−1 ≤ p−1.

Since p is an arbitrary natural number there exists a subsequence {zip}∞
p=1 such that at least one

of the sequences {zip}∞
p=1 and {T(zip)}∞

p=1 converges to some point xg ∈ X. Clearly,

g(xg) = g(T(xg)) = inf(g). (16)

Let ξ ∈ X satisfy
g(ξ) = inf(g). (17)

Property (P1) and (15)–(17) imply that

min{ρ(ξ, x( f , n)), ρ(T(ξ), x( f , n))} ≤ p−1,

min{ρ(xg, x( f , n)), ρ(T(xg), x( f , n))} ≤ p−1. (18)

The relations above (see (18)) imply that

min{ρ(ξ, xg), ρ(ξ, T(xg)), ρ(T(ξ), xg), ρ(T(ξ), T(xg))} ≤ 2p−1.

Since p is an arbitrary natural number we conclude that

min{ρ(ξ, xg), ρ(ξ, T(xg)), ρ(T(ξ), xg), ρ(T(ξ), T(xg))} = 0
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and at least one of the following relations hold:

ξ = xg, ξ = T(xg).

Assume that
h ∈ U ( f , n) (19)

and z ∈ X satisfies
h(z) ≤ inf(h) + δ( f , n). (20)

Property (P1), (19) and (20) imply that

min{ρ(z, x( f , n)), ρ(T(z), x( f , n)) ≤ n−1 ≤ p−1.

Together with (18) this implies that

min{ρ(z, xg), ρ(z, T(xg)), ρ(T(z), xg), ρ(T(z), T(xg))} ≤ 2p−1.

Since p is an arbitrary natural number this completes the proof of Theorem 1.

4. Conclusions

In this paper, using the Baire category approach, we study the large class of symmetric
optimization problems which is identified with a space of objective functions, equipped with an
appropriate complete metric. Such classes of optimization problems arise in crystallography. We show
the existence of subset of the space of functions, which is a countable intersection of open and
everywhere dense sets, such that for every objective function from this intersection the corresponding
symmetric optimization problem possesses a solution.
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