# Fault Detection for Complex System under Multi-Operation Conditions Based on Correlation Analysis and Improved Similarity

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Multi-Operation Conditions

#### 2.2. Autocorrelation Analysis

#### 2.3. Fault Detection

## 3. Experimental Verification

#### 3.1. Data Introduction and Operation Condition Division

#### 3.2. Experimental Results and Analysis

#### 3.3. Effect of Different Data Lengths

#### 3.4. Comparison of Methods

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Wei, Z.; Mao, Y.; Yin, Z.; Sun, G.; Zang, H. Fault detection based on the generalized S-Transform with a variable factor for resonant grounding distribution networks. IEEE Access
**2020**, 8, 91351–91367. [Google Scholar] [CrossRef] - Zeng, X.; Yu, K.; Wang, Y.; Xu, Y. A novel single phase grounding fault protection scheme without threshold setting for neutral ineffectively earthed power systems. CSEE J. Power Energy Syst.
**2016**, 2, 73–81. [Google Scholar] [CrossRef] - Xue, H.; Wang, M.; Li, Z.; Chen, P. Sequential fault detection for sealed deep groove ball bearings of in-wheel motor in variable operating conditions. J. Vibroeng.
**2017**, 19, 5947–5959. [Google Scholar] [CrossRef] - Cariño, J.A.; Delgado-Prieto, M.; Zurita, D.; Picot, A.; Ortega, J.A.; Romero-Troncoso, R.J. Incremental novelty detection and fault identification scheme applied to a kinematic chain under non-stationary operation. ISA Trans.
**2019**, 97, 76–85. [Google Scholar] [CrossRef] [PubMed] - Zhang, H.; Chen, H.; Guo, Y.; Wang, J.; Li, G.; Shen, L. Sensor fault detection and diagnosis for a water source heat pump air-conditioning system based on PCA and preprocessed by combined clustering. Appl. Therm. Eng.
**2019**, 160, 114098. [Google Scholar] [CrossRef] - Wang, H.; Wang, H.; Jiang, G.; Li, J.; Wang, Y. Early fault detection of wind turbines based on operational condition clustering and optimized deep belief network modeling. Energies
**2019**, 12, 984. [Google Scholar] [CrossRef] [Green Version] - Ruiz-Carcel, C.; Starr, A. Data-based detection and diagnosis of faults in linear actuators. IEEE Trans. Instrum. Meas.
**2018**, 67, 2035–2047. [Google Scholar] [CrossRef] - Arellano-Padilla, J.; Sumner, M.; Gerada, C. Condition monitoring approach for permanent magnet synchronous motor drives based on the INFORM method. IET Electr. Power Appl.
**2015**, 10, 54–62. [Google Scholar] [CrossRef] - Asghar, F.; Talha, M.; Kim, S.Y.; Kim, S. Hotelling T
^{2}index based PCA method for fault detection in transient state processes. Pap. Soc. Control Robot Syst.**2016**, 22, 276–280. [Google Scholar] - Amarbayasgalan, T.; Pham, V.H.; Theera-Umpon, N.; Ryu, K.H. Unsupervised anomaly detection approach for time-Series in multi-domains using deep reconstruction error. Symmetry
**2020**, 12, 1251. [Google Scholar] [CrossRef] - Li, Q.; Liang, S.Y. Weak fault detection for gearboxes using majorization-minimization and asymmetric convex penalty regularization. Symmetry
**2018**, 10, 243. [Google Scholar] [CrossRef] [Green Version] - Hao, W.; Liu, F. Imbalanced data fault diagnosis based on an evolutionary online sequential extreme learning machine. Symmetry
**2020**, 12, 1204. [Google Scholar] [CrossRef] - Jiang, W.; Wang, M.; Deng, X.; Gou, L. Fault diagnosis based on TOPSIS method with Manhattan distance. Adv. Mech. Eng.
**2019**, 11, 1. [Google Scholar] [CrossRef] [Green Version] - Khosravani, M.R.; Nasiri, S.; Weinberg, K. Application of case-based reasoning in a fault detection system on production of drippers. Appl. Soft Comput.
**2019**, 75, 227–232. [Google Scholar] [CrossRef] - Liu, H.; Zhong, M.; Liu, Y. Fault diagnosis for a kind of nonlinear systems by using model-based contribution analysis. J. Frankl. Inst.
**2018**, 355, 8158–8176. [Google Scholar] [CrossRef] - Huang, S.; Yang, X.; Wang, L.; Chen, W.; Zhang, F.; Dong, D. Two-stage turnout fault diagnosis based on similarity function and fuzzy c-means. Adv. Mech. Eng.
**2018**, 10, 1687814018811402. [Google Scholar] [CrossRef] - Wang, X.G.; Huang, L.W.; Zhang, Y.W. Modeling and monitoring of nonlinear multi-mode processes based on similarity measure-KPCA. J. Cent. South Univ.
**2017**, 24, 665–674. [Google Scholar] [CrossRef] - Queiroz, L.P.; Gomes, J.P.P.; Rodrigues, F.C.M.; Brito, F.T.; Chaves, I.C.; Leite, L.G.; Machado, J.C. Fault detection in hard disk drives based on a semi parametric model and statistical estimators. New Gener. Comput.
**2017**, 36, 5–19. [Google Scholar] [CrossRef] - Marins, M.A.; Ribeiro, F.M.; Netto, S.L.; da Silva, E.A. Improved similarity-based modeling for the classification of rotating-machine failures. J. Frankl. Inst.
**2017**, 355, 1913–1930. [Google Scholar] [CrossRef] - Fontes, C.H.; Pereira, O. Pattern recognition in multivariate time series–A case study applied to fault detection in a gas turbine. Eng. Appl. Artif. Intell.
**2016**, 49, 10–18. [Google Scholar] [CrossRef] - Liang, S.; Long, Z.; Zhou, X.; Wang, P. Optimized KLD-Based Fault Detection Method for Complex System Under Multi-Operation Conditions. IEEE Access
**2020**, 8, 163917–163925. [Google Scholar] [CrossRef] - Wang, P.; Long, Z.; Lv, Z.; Wang, Z. Fault detection for Non-gaussian processes using multiple canonical correlation analysis models and box-cox transformation. IEEE Access
**2019**, 7, 68707–68717. [Google Scholar] [CrossRef] - Zhou, X.; Wang, P.; Long, Z. Fault detection for suspension system of maglev trains based on historical health data. IEEE Access
**2020**, 8, 134290–134302. [Google Scholar] [CrossRef] - Wang, P.; Long, Z.; Dang, N. Multi-model switching based fault detection for the suspension system of maglev train. IEEE Access
**2019**, 7, 6831–6841. [Google Scholar] [CrossRef]

**Figure 2.**Schematic diagram for the health index (HI) of the system under different operation conditions.

**Figure 4.**(

**a**) The random signal Y. (

**b**) The autocorrelation sequence c. (

**c**) The standardized autocorrelation sequence $\tilde{c}$.

**Figure 5.**(

**a**) The random signal ${Y}_{1}$. (

**b**) The autocorrelation sequence ${c}_{1}$. (

**c**) The standardized autocorrelation sequence $\tilde{{c}_{1}}$.

**Figure 7.**(

**a**) Historical data of a single-point suspension system for one day. (

**b**) Enlarged drawing of the fault in historical data.

**Figure 9.**Enlarged drawing of the fault shown in Figure 8.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liang, S.; Zeng, J.
Fault Detection for Complex System under Multi-Operation Conditions Based on Correlation Analysis and Improved Similarity. *Symmetry* **2020**, *12*, 1836.
https://doi.org/10.3390/sym12111836

**AMA Style**

Liang S, Zeng J.
Fault Detection for Complex System under Multi-Operation Conditions Based on Correlation Analysis and Improved Similarity. *Symmetry*. 2020; 12(11):1836.
https://doi.org/10.3390/sym12111836

**Chicago/Turabian Style**

Liang, Shi, and Jiewei Zeng.
2020. "Fault Detection for Complex System under Multi-Operation Conditions Based on Correlation Analysis and Improved Similarity" *Symmetry* 12, no. 11: 1836.
https://doi.org/10.3390/sym12111836