# Determination of Young’s Moduli of the Phases of Composite Materials Reinforced with Longitudinal Fibers, by Global Measurements

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Method to Determine the Engineering Elastic Constants of Components Using Global Experimental Measurements

## 3. Determination of Young’s Moduli of a Multiphase Composite with Longitudinal Fibers

#### 3.1. Using Measured Longitudinal Young’s Modulus

#### 3.2. Using Measured Transverse Young’s Modulus

## 4. Experimental Results

^{2}; ${A}_{2}=35.14$ mm

^{2}for the specimen $L8$. As regards specimen $L6$, we obtained ${A}_{1}=352.25$ mm

^{2}; ${A}_{2}=47.75$ mm

^{2}and ${A}_{1}=364.86$ mm

^{2}; ${A}_{2}=35.14$ mm

^{2}were the results for specimen $L7$. The corresponding Young’s moduli for the set of 15 test specimen were as follows: ${E}_{T}=2858.59$ N/mm

^{2}; ${E}_{L}=\mathrm{14,486.36}$ N/mm

^{2}.

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Cristescu, N.D.; Craciun, E.M.; Soós, E. Mechanics of Elastic Composites; Chapman and Hall/CRC: London, UK, 2003. [Google Scholar]
- Tsai, W.; Hahn, M.T. Introduction to Composite Materials; Technomic Publishing Co.: Westport, CT, USA, 1980. [Google Scholar]
- Suquet, P. Matériaux Composites-Matériaux Nouveaux; Lecture Notes; University Marseille: Marseille, France, 1989. [Google Scholar]
- Zaoui, A. Materiaux Hétérogénes; Lecture Notes; University Marseille: Marseille, France, 1989. [Google Scholar]
- Garajeu, M. Contribution à L’étude du Comportement non Lineaire de Milieu Poreaux Avec ou Sans Renfort. Ph.D. Thesis, University Marseille, Marseille, France, 1995. [Google Scholar]
- Mandel, J. Plasticité Classique et Viscoplasticité; Courses and lectures, No. 97, Udine 1971; Springer, Wien: New York, NY, USA, 1972. [Google Scholar]
- Hill, R. Elastic properties of reinforced solids; some theoretical principles. J. Mech. Phys. Solids
**1963**, 11, 357–372. [Google Scholar] [CrossRef] - Hill, R. Theory of mechanical properties of fiber-strengthened materials: I. Elastic behavior. J. Mech. Phys. Solids
**1964**, 12, 199–221. [Google Scholar] [CrossRef] - Hill, R. Theory of mechanical properties of fiber-strengthened materials: III. Self consistent model. J. Mech. Phys. Solids
**1965**, 13, 189–198. [Google Scholar] [CrossRef] - Hill, R. A self-consistent mechanics of composite-material. J. Mech. Phys. Solids
**1965**, 13, 213–222. [Google Scholar] [CrossRef] - Hill, R. The essential structure of constitutive laws for metal composites and policrystals. J. Mech. Phys. Solids
**1967**, 15, 79–95. [Google Scholar] [CrossRef] - Hill, R. On macroscopic effects of heterogeneity in elastoplastic media at finite strain. Math. Proc. Cambr. Phil. Soc.
**1984**, 95, 481–494. [Google Scholar] [CrossRef] - Budiansky, B. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids
**1965**, 13, 223–227. [Google Scholar] [CrossRef] - Hashin, Z. Theory of mechanical behavior of heterogeneous media. Appl. Mech. Rev.
**1964**, 17, 1–9. [Google Scholar] - Hashin, Z. On the elastic behavior of fiber reinforced materials of arbitrary transverse phase geometry. J. Mech. Phys. Solids
**1965**, 13, 119–134. [Google Scholar] [CrossRef] - Hashin, Z. Analyse of composite materials, A survey. J. Appl. Mech.
**1983**, 50, 481–504. [Google Scholar] [CrossRef] - Hashin, Z.; Shtrikman, S. On some variational principles in anisotropic and non-homogenous elasticity. J. Mech. Phys. Solids
**1962**, 10, 335–342. [Google Scholar] [CrossRef] - Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids
**1963**, 11, 127–140. [Google Scholar] [CrossRef] - Vlase, S.; Teodorescu-Draghicescu, H.; Motoc, D.L.; Scutaru, M.L.; Serbina, L.; Calin, M.R. Behavior of Multiphase Fiber-Reinforced Polymers under Short Time Cyclic Loading. Optoelectron. Adv. Mater. Rapid Commun.
**2011**, 5, 419–423. [Google Scholar] - Teodorescu-Draghicescu, H.; Stanciu, A.; Vlase, S.; Scutaru, L.; Calin, M.R.; Serbina, L. Finite Element Method Analysis of Some Fibre-Reinforced Composite Laminates. Optoelectron. Adv. Mater. Rapid Commun.
**2011**, 5, 782–785. [Google Scholar] - Stanciu, A.; Teodorescu-Drăghicescu, H.; Vlase, S.; Scutaru, M.L.; Călin, M.R. Mechanical behavior of CSM450 and RT800 laminates subjected to four-point bend tests. Optoelectron. Adv. Mater. Rapid Commun.
**2012**, 6, 495–497. [Google Scholar] - Niculiță, C.; Vlase, S.; Bencze, A.; Mihălcică, M.; Calin, M.R.; Serbina, L. Optimum stacking in a multi-ply laminate used for the skin of adaptive wings. Optoelectron. Adv. Mater. Rapid Commun.
**2011**, 5, 1233–1236. [Google Scholar] - Katouzian, M.; Vlase, S.; Calin, M.R. Experimental procedures to determine the viscoelastic parameters of laminated composites. J. Optoelectron. Adv. Mater.
**2011**, 13, 1185–1188. [Google Scholar] - Teodorescu-Draghicescu, H.; Vlase, S.; Stanciu, M.D.; Curtu, I.; Mihalcica, M. Advanced Pultruded Glass Fibers-Reinforced Isophtalic Polyester Resin. Mater. Plast.
**2015**, 52, 62–64. [Google Scholar] - Teodorescu-Draghicescu, H.; Scutaru, M.L.; Rosu, D.; Calin, M.R.; Grigore, P. New Advanced Sandwich Composite with twill weave carbon and EPS. J. Optoelectron. Adv. Mater.
**2013**, 15, 199–203. [Google Scholar] - Vlase, S.; Marin, M.; Oechsner, A.; Scutaru, M.L. Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Contin. Mech. Thermodyn.
**2019**, 31, 715–724. [Google Scholar] [CrossRef] - Abd-Elaziz, E.M.; Marin, M.; Othman, M.I. On the Effect of Thomson and Initial Stress in a Thermo-Porous Elastic Solid under G-N Electromagnetic Theory. Symmetry
**2019**, 11, 413. [Google Scholar] [CrossRef] [Green Version] - Marin, M.; Vlase, S.; Paun, M. Considerations on double porosity structure for micropolar bodies. AIP Adv.
**2015**, 5, 037113. [Google Scholar] [CrossRef] [Green Version] - Teodorescu-Drăghicescu, H.; Vlase, S.; Scutaru, L.; Serbina, L.; Calin, M.R. Hysteresis effect in a three-phase polymer matrix composite subjected to static cyclic loadings. Optoelectron. Adv. Mater. Rapid Commun.
**2011**, 5, 273–277. [Google Scholar] - Bodig, J.; Jayne, B.A. Mechanics of Wood and Wood Composites; Van Nostrand Reinhold Company: New York, NY, USA, 1982. [Google Scholar]
- Gálfi, B.-P.; Száva, I. Experimental Method to Establish the Individual Fibres’ Mechanical Properties of the Hard-wood Specimens. In Proceedings of the 26th Symposium on Advances in Experimental Mechanics, 23–26 September 2009; Montanuniversität Leoben: Leoben, Austria, 2009; pp. 63–64. [Google Scholar]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Szavá, R.I.; Szavá, I.; Vlase, S.; Modrea, A.
Determination of Young’s Moduli of the Phases of Composite Materials Reinforced with Longitudinal Fibers, by Global Measurements. *Symmetry* **2020**, *12*, 1607.
https://doi.org/10.3390/sym12101607

**AMA Style**

Szavá RI, Szavá I, Vlase S, Modrea A.
Determination of Young’s Moduli of the Phases of Composite Materials Reinforced with Longitudinal Fibers, by Global Measurements. *Symmetry*. 2020; 12(10):1607.
https://doi.org/10.3390/sym12101607

**Chicago/Turabian Style**

Szavá, Renata Ildikó, Ioan Szavá, Sorin Vlase, and Arina Modrea.
2020. "Determination of Young’s Moduli of the Phases of Composite Materials Reinforced with Longitudinal Fibers, by Global Measurements" *Symmetry* 12, no. 10: 1607.
https://doi.org/10.3390/sym12101607