Dark Matter as a Result of Field Oscillations in the Modified Theory of Induced Gravity
Abstract
:1. Introduction
2. Centrally Symmetric Solutions
Numerical Solutions for Geodesic Lines
3. Conclusions and Discussion
Funding
Conflicts of Interest
Abbreviations
GR | General relativity |
MTIG | Modified Theory of Induced Gravity |
References
- Zasov, A.V.; Saburova, A.S.; Khoperskov, A.V.; Khoperskov, S.A. Dark matter in galaxies. Phys. Usp. 2017, 60, 3–40. [Google Scholar] [CrossRef] [Green Version]
- Speake, C.; Quinn, T. The search for Newton’s constant. Phys. Today 2014, 67, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Rosi, G.; Sorrentino, F.; Cacciapuoti, L.; Prevedelli, M.; Tino, G.M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 2014, 510, 518–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Chao, X.; Liu, J.-P.; Wu, J.-F.; Yang, S.-Q.; Shao, C.-G.; Quan, L.-D.; Tan, W.-H.; Tu, L.-C.; Liu, Q.; et al. Measurements of the gravitational constant using two independent method. Nature 2018, 560, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. Determination of the Local Value of the Hubble Constant. Astrophys. J. 2016. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.; Anderson, J.; Mackenty, J.W.; Bowers, J.B.; Clubb, K.I.; Filippenko, A.V.; Jones, D.O.; et al. New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant. arXiv 2018, arXiv:1801.01120. [Google Scholar] [CrossRef] [Green Version]
- Zaripov, F. The Ambiguity in the Definition and Behavior of the Gravitational and Cosmological ‘Coupling Constants’ in the Theory of Induced Gravity. Symmetry 2019, 11, 81. [Google Scholar] [CrossRef] [Green Version]
- Zaripov, F. Oscillating Cosmological Solutions in the Modified Theory of Induced Gravity. Adv. Astron. 2019, 2019, 15. [Google Scholar] [CrossRef] [Green Version]
- Bizon, P.; Rostworowski, A. On weakly turbulent instability of anti-de Sitter space. Phys. Rev. Lett. 2011, 107, 031102. [Google Scholar] [CrossRef] [Green Version]
- Maliborski, M.; Rostworowski, A. Lecture notes on turbulent instability of anti-de Sitter spacetime. Int. J. Mod. Phys. A 2013, 28, 1340020. [Google Scholar] [CrossRef] [Green Version]
- Craps, B.; Evninb, O.; Vanhoof, J. Ultraviolet asymptotics and singular dynamics of AdS perturbations. JHEP 2015, 1510. [Google Scholar] [CrossRef] [Green Version]
- Dias, O.J.C.; Horowitz, G.T.; Santos, J.E. Gravitational Turbulent Instability of Anti-de Sitter Space. Class. Quant. Grav. 2012, 29, 194002. [Google Scholar] [CrossRef]
- Zaripov, F.S. A conformally invariant generalization of string theory to higher-dimensional objects. Hierarchy of coupling constants. Gravit. Cosmol. 2007, 13, 273–281. [Google Scholar]
- Zaripov, F. Modified equations in the theory of induced gravity. Astr. Space Sci. 2014, 352, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Zaripov, F.S. Phenomenological Model of Multiphase Cosmological Scenario in Theory of Induced Gravity. Russ. Phys. J. 2017, 59, 1834–1841. [Google Scholar] [CrossRef]
- Sakharov, A.D. Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation. Sov. Phys. Dokl. 1968, 12, 1040, Reprinted in Gen. Rel. Grav. 2000, 32, 365–367. [Google Scholar] [CrossRef]
- Visser, M. Sakharov’s Induced Gravity: A Modern Perspective. Mod. Phys. Lett. 2002, 17, 977. [Google Scholar] [CrossRef] [Green Version]
- Andrianov, A.A.; Andrianov, V.A.; Giacconi, P.; Soldati, R. Induced gravity and universe creation on the domain wall in five-dimensional space-time. Theor. Math. Phys. 2006, 148, 880. [Google Scholar] [CrossRef]
- Linnemann, N.S.; Visser, M.R. Hints towards the Emergent Nature of Gravity. arXiv 2018, arXiv:1711.10503v2. [Google Scholar] [CrossRef] [Green Version]
- Verlinde, E. On the origin of gravity and the laws of Newton. J. High Energy Phys. 2011, 2011, 1. [Google Scholar] [CrossRef] [Green Version]
- Verlinde, E. Emergent gravity and the dark universe. SciPost Phys. 2017. [Google Scholar] [CrossRef]
- Zaripov, F.S. Generalized equations of induced gravity. The evolution of coupling constants. Vestnik TGGPU 2010, 4, 23–28. (In Russian) [Google Scholar]
- Brans, C.; Dicke, R.H. Mach’s principle and relativistic theory of gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Jordan, P. Schwerkraft and Weltall; Friedrich Vieweg und Sohn: Braunschweig, Germany, 1955. [Google Scholar]
- Narlikar, J.V. Lepton creation and the Dirac relationship between fundamental constants. Nature 1974, 247, 99–100. [Google Scholar] [CrossRef]
- Scholz, E. Weyl geometry in late 20th century physics. arXiv 2011, arXiv:1111.3220v1. [Google Scholar]
- Aviles, A.; Gruber, C.; Luongo, O.; Quevedo, H. Cosmography and constraints on the equation of state of the Universe in various parametrizations. Phys. Rev. D 2012, 86, 123516. [Google Scholar] [CrossRef] [Green Version]
- Aalbers, J. Conformal Symmetry in Classical Gravity. 2013. Available online: http://dspace.library.uu.nl/handle/1874/280136 (accessed on 20 November 2018).
- Carballo-Rubio, R. Longitudinal diffeomorphisms obstruct the protection of vacuum energy. Phys. Rev. D 2015, 91, 124071. [Google Scholar] [CrossRef] [Green Version]
- Dengiz, S.; Tekin, B. Higgs Mechanism for New Massive Gravity and Weyl Invariant Extensions of Higher Derivative Theories. Phys. Rev. D 2011, 84, 024033. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.I.; Odintsov, S.D. Introduction to Modified Gravity and Gravitational Alternative for Dark Energy. Int. J. Geom. Methods Mod. Phys. 2007, 4, 115–145. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef] [Green Version]
- Moraes, P.H.R.S.; Sahoo, P.K. Wormholes in exponential f(R, T) gravity. Eur. Phys. J. 2019, 79. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.I.; Odintsov, S.D. Accelerating cosmology in modified gravity: From convenient F(R) or string-inspired theory to bimetric F(R) gravityInt. J. Geom. Methods Mod. Phys. 2014, 11, 1–24. [Google Scholar] [CrossRef]
- De Rham, C.; Dvali, G.; Hofmann, S.; Khoury, J.; Pujolàs, O.; Redi, M.; Tolley, A.J. Cascading Gravity: Extending the Dvali-Gabadadze-Porrati Model to Higher Dimension. Phys. Rev. Lett. 2008, 100, 251603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luongo, O.; Muccino, M. Speeding up the Universe using dust with pressure. Phys. Rev. D 2018, 98, 103520. [Google Scholar] [CrossRef] [Green Version]
- Peter, K.; Dunsby, S.; Luongo, O.; Reverberi, L. Dark Energy and Dark Matter from an additional adiabatic fluid. Phys. Rev. D 2016, 94, 083525. [Google Scholar]
- De Felice, A.; Tsujikawa, S. f(R) theories. Liv. Rev. Relativ. 2010. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Luongo, O.; Pincak, R.; Ravanpak, A. Cosmic acceleration in non-flat f(T) cosmology. arXiv 2018, arXiv:1804.03649. [Google Scholar] [CrossRef] [Green Version]
- Ringermacher, H.I.; Mead, L.R. Observation of Discrete Oscillations in a Model-Independent Plot of Cosmological Scale Factor versus Lookback Time and Scalar Field Model. Astron. J. 2015, 149, 137. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Oikonomou, V.K.; Sebastianie, L. Unification of constant-roll inflation and dark energy with logarithmic R2-corrected and exponential F(R) gravity. Nucl. Phys. 2017, 923, 608–632. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Pozdeeva, E.O.; Starobinsky, A.A.; Tronconi, A.; Venturi, G.; Vernov, S.Y. Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities. Phys. Rev. D 2016, 94, 063510. [Google Scholar] [CrossRef] [Green Version]
- Bars, I.; James, A. Physical interpretation of antigravity. Phys. Rev. D 2016, 93, 044029. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, N.; Feast, M.W.; Bono, G.; Kobayashi, N.; Inno, L.; Nagayama, T.; Nishiyama, S.; Matsuoka, Y.; Nagata, T. A lack of classical Cepheids in the inner part of the Galactic disc. MNRAS 2016, 462, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Van Dokkum, P.; Abraham, R.; Romanowsky, A.J.; Brodie, J.; Conroy, C.; Danieli, S.; Zhang, J. Extensive globular cluster systems associated with ultra diffuse galaxies in the Coma cluster. Astrophys. J. Lett. 2017, 844, L11. [Google Scholar] [CrossRef]
- Van Dokkum, P.; Cohen, Y.; Danieli, S.; Kruijssen, J.M.D.; Romanowsky, A.J.; Merritt, A.; Abraham, R.; Brodie, J.; Conroy, C.; Lokhorst, D.; et al. A galaxy lacking dark matter. Nature 2018, 555, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Van Dokkum, P.; Cohen, Y.; Danieli, S.; Kruijssen, J.M.D.; Romanowsky, A.J.; Merritt, A.; Abraham, R.; Brodie, J.; Conroy, C.; Lokhorst, D.; et al. An Enigmatic Population of Luminous Globular Clusters in a Galaxy Lacking Dark Matter. Astrophys. J. Lett. 2018, 856, L30. [Google Scholar] [CrossRef]
- Van Dokkum, P.; Abraham, R.; Brodie, J.; Conroy, C.; Danieli, S.; Merritt, A.; Mowla, L.; Romanowsky, A.; Zhang, J. A High Stellar Velocity Dispersion and 100 Globular Clusters for the Ultra Diffuse Galaxy Dragonfly 44. Astrophys. J. Lett. 2016, 828, L6. [Google Scholar] [CrossRef]
- Anderson, J.D.; Laing, P.A.; Lau, E.L.; Nieto, M.M.; Turyshev, S.G. Search for a Standard Explanation of the Pioneer Anomaly. Mod. Phys. Lett. A 2002, 17, 875–885. [Google Scholar] [CrossRef] [Green Version]
- Nieto, M.M.; Anderson, J.D. Using Early Data to Illuminate the Pioneer Anomaly. Class. Quant. Grav. 2005, 22, 5343–5354. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaripov, F. Dark Matter as a Result of Field Oscillations in the Modified Theory of Induced Gravity. Symmetry 2020, 12, 41. https://doi.org/10.3390/sym12010041
Zaripov F. Dark Matter as a Result of Field Oscillations in the Modified Theory of Induced Gravity. Symmetry. 2020; 12(1):41. https://doi.org/10.3390/sym12010041
Chicago/Turabian StyleZaripov, Farkhat. 2020. "Dark Matter as a Result of Field Oscillations in the Modified Theory of Induced Gravity" Symmetry 12, no. 1: 41. https://doi.org/10.3390/sym12010041