On Extendability of the Principle of Equivalent Utility
Abstract
:1. Introduction
2. Problem Formulation
3. Preliminary Results
- (i)
- (ii)
- (iii)
- For every , the function is continuous, where
- (iv)
- For every , the function is continuous and .
4. Main Result
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bühlmann, H. Mathematical Models in Risk Theory; Springer: New York, NY, USA, 1970. [Google Scholar]
- Bowers, N.L.; Gerber, H.U.; Hickman, J.C.; Jones, D.A.; Nesbitt, C.J. Actuarial Mathematics; The Society of Actuaries: Itasca, IL, USA, 1986. [Google Scholar]
- Chudziak, J. On applications of inequalities for quasideviation means in actuarial mathematics. Math. Inequal. Appl. 2018, 21, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Kaas, R.; Goovaerts, M.; Dhaene, J.; Denuit, M. Modern Actuarial Risk Theory; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Quiggin, J. A theory of anticipated utility. J. Econ. Behav. Organ. 1982, 3, 323–343. [Google Scholar] [CrossRef]
- Diecidue, E.; Wakker, P. On the Intuition of Rank-Dependent Utility. J. Risk Uncertain. 2001, 23, 281–298. [Google Scholar] [CrossRef]
- Heilpern, S. A rank-dependent generalization of zero utility principle. Insur. Math. Econ. 2003, 33, 67–73. [Google Scholar] [CrossRef]
- Chudziak, J. On existence and uniqueness of the principle of equivalent utility under Cumulative Prospect Theory. Insur. Math. Econ. 2018, 79, 243–246. [Google Scholar] [CrossRef]
- Tsanakas, A.; Desli, E. Risk measures and theory and choices. Br. Actuar. J. 2003, 9, 959–981. [Google Scholar] [CrossRef] [Green Version]
- Denuit, M.; Dhaene, J.; Goovaerts, M.; Kaas, R. Risk measurement with equivalent utility principles. Stat. Decis. 2006, 24, 1–25. [Google Scholar]
- Chudziak, J. Extension problem for principles of equivalent utility. Aequ. Math. 2019, 93, 217–238. [Google Scholar] [CrossRef] [Green Version]
- Kałuszka, M.; Krzeszowiec, M. Pricing insurance contracts under Cumulative Prospect Theory. Insur. Math. Econ. 2012, 50, 159–166. [Google Scholar] [CrossRef]
- Kałuszka, M.; Krzeszowiec, M. On iterative premium calculation principles under Cumulative Prospect Theory. Insur. Math. Econ. 2013, 52, 435–440. [Google Scholar] [CrossRef]
- Sobek, B. Pexider equation on a restricted domain. Demonstr. Math. 2010, 43, 81–88. [Google Scholar]
- Kuczma, M. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality; Birkhäuser: Berlin, Germany, 2009. [Google Scholar]
- Chudziak, J. On functional equations stemming from actuarial mathematics. Aequationes Math. 2018, 92, 471–486. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chudziak, M.; Żołdak, M. On Extendability of the Principle of Equivalent Utility. Symmetry 2020, 12, 42. https://doi.org/10.3390/sym12010042
Chudziak M, Żołdak M. On Extendability of the Principle of Equivalent Utility. Symmetry. 2020; 12(1):42. https://doi.org/10.3390/sym12010042
Chicago/Turabian StyleChudziak, Małgorzata, and Marek Żołdak. 2020. "On Extendability of the Principle of Equivalent Utility" Symmetry 12, no. 1: 42. https://doi.org/10.3390/sym12010042
APA StyleChudziak, M., & Żołdak, M. (2020). On Extendability of the Principle of Equivalent Utility. Symmetry, 12(1), 42. https://doi.org/10.3390/sym12010042