# Complex Patterns to the (3+1)-Dimensional B-type Kadomtsev-Petviashvili-Boussinesq Equation

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The SGEM

## 3. Application

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Biswas, A.; Yıldırım, Y.; Yaşar, E.; Zhou, Q.; Moshokoa, S.P.; Belic, M. Optical soliton solutions to Fokas-Lenells equations using some different methods. Optik
**2018**, 173, 21–31. [Google Scholar] [CrossRef] - Wazwaz, A.M. New (3+1)-dimensional nonlinear evolution equations with mKdV equation constituting its main part: Multiple soliton solutions. Chaos Solitons Fractals
**2015**, 76, 93–97. [Google Scholar] [CrossRef] - Abdullahi, A.R. Symbolic computation on exact solutions of a coupled Kadomtsev Petviashvili equation: Lie symmetry analysis and extended tanh method. Comput. Math. Appl.
**2017**, 74, 1897–1902. [Google Scholar] - Wazwaz, A.M. New travelling wave solutions to the Boussinesq and the Klein Gordon equations. Commun. Nonlinear Sci. Numer. Simul.
**2008**, 13, 889–901. [Google Scholar] [CrossRef] - Wazwaz, A.M. The tanh method and the sine cosine method for solving the KP-MEW equation. Int. J. Comput. Math.
**2007**, 82, 235–246. [Google Scholar] [CrossRef] - Vakhnenko, V.O.; Parkes, E.J.; Morrison, A.J. A Böcklund transformation and the inverse Scattering transform method for the generalized Vakhnenko equation. Chaos Solitons Fractals
**2003**, 17, 683–692. [Google Scholar] [CrossRef] - Wazwaz, A.M. Multiple complex and multiple real soliton solutions for the integrable sine Gordon equation. Optik
**2018**, 172, 622–627. [Google Scholar] [CrossRef] - Khalique, C.M.; Mhlanga, I.E. Travelling waves and conservation laws of a (2+1)-dimensional coupling system with Korteweg-de Vries equation. Appl. Math. Nonlinear Sci.
**2018**, 3, 241–254. [Google Scholar] [CrossRef] [Green Version] - Zhao, Z.; He, L. Multiple lump solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation. Appl. Math. Lett.
**2019**, 95, 114–121. [Google Scholar] [CrossRef] - Tala-Tebue, E.; Tsobgni-Fozap, D.C.; Kenfack-Jiotsa, A.; Kofane, T.C. Envelope periodic solutions for a discrete network with the Jacobi elliptic functions and the alternative (G’/G)-expansion method including the generalized Riccati equation. Eur. Phys. J. Plus
**2014**, 129, 136. [Google Scholar] [CrossRef] - Kudryashov, N.A.; Sinelshchikov, D.I. New non-standard Lagrangians for the Lienard-type equations. Appl. Math. Lett.
**2017**, 63, 124–129. [Google Scholar] [CrossRef] [Green Version] - Tala-Tebue, E.; Zayed, E.M.E. New Jacobi elliptic function solutions, solitons and other solutions for the (2+1)-dimensional nonlinear electrical transmission line equation. Eur. Phys. J. Plus
**2018**, 133, 1–10. [Google Scholar] [CrossRef] - Fan, E. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A
**2000**, 277, 212–219. [Google Scholar] [CrossRef] - Parkes, E.J.; Duffy, B.R. An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations. Comput. Phys. Commun.
**1998**, 98, 288–300. [Google Scholar] [CrossRef] - Baskonus, H.M.; Bulut, H.; Belgacem, F.B.M. Analytical solutions for nonlinear long-short wave interaction systems with highly complex structure. J. Comput. Appl. Math.
**2017**, 312, 257–266. [Google Scholar] [CrossRef] - Wazwaz, A.M. The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Appl. Math. Comput.
**2007**, 184, 1002–1014. [Google Scholar] [CrossRef] - Qingling, G.; Xueqin, Z. A Generalized Tanh Method and its Application. Appl. Math. Sci.
**2011**, 5, 3789–3800. [Google Scholar] - Whitham, G.B. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Bulut, H.; Baskonus, H.M. On the complex structures of Kundu-Eckhaus equation via Improved Bernoulli sub-equation function method. Waves Random Complex Media
**2015**, 25, 720–728. [Google Scholar] - Malfliet, W.; Hereman, W. The tanh method: II.Perturbation technique for conservative systems. Phys. Scr.
**1996**, 54, 569–575. [Google Scholar] [CrossRef] - Malfliet, W. The tanh method a tool for solving certain classes of nonlinear evolution and wave equations. J. Comput. Appl. Math.
**2004**, 164–165, 529–541. [Google Scholar] [CrossRef] [Green Version] - Wang, X.B.; Tian, S.F.; Yan, H.; Zhang, T.T. On the solitary waves, breather waves and rogue waves to a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation. Comput. Math. Appl.
**2017**, 74, 556–563. [Google Scholar] [CrossRef] - Gao, Y.T.; Tian, B. Generalized hyperbolic-function method with computerized Symbolic computation to construct the solitonic solutions to nonlinear equations of Mathematical physics. Comput. Phys. Commun.
**2001**, 133, 158–164. [Google Scholar] [CrossRef] - Wu, X.Y.; Tian, B.; Chai, H.P.; Sun, Y. Rogue waves and lump solutions for a (3+1)-dimensional generalized B-type Kadomtsev Petviashvili equation in fluid mechanics. Mod. Phys. Lett. B
**2017**, 31, 1750122. [Google Scholar] [CrossRef] - Kudryashov, N.A. A new note on exact complex travelling wave solutions for (2+1)-dimensional B-type Kadomtsev–Petviashvili equation. Appl. Math. Comput.
**2010**, 217, 2282–2284. [Google Scholar] [CrossRef] - Wang, M.; Li, X.; Zhang, J. The (G’/G) expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A
**2008**, 372, 417–423. [Google Scholar] [CrossRef] - Khalfallah, M. New Exact traveling wave solutions of the (2+1) dimensional Zakharov-Kuznetsov (ZK) equation. An. Stiintifice Ale Univ. Ovidius Constanta
**2007**, 15, 35–44. [Google Scholar] - Raslan, K.R. Numerical Methods for Partial Differential Equations. Ph.D. Thesis, Al-Azhar University, Cairo, Egypt, 1999. [Google Scholar]
- Kudryashov, N.A. Traveling wave reduction of the modified KdV hierarchy: The Lax pair and the first integrals. Commun. Nonlinear Sci. Numer. Simul.
**2019**, 73, 472–480. [Google Scholar] [CrossRef] - Kudryashov, N.A. Solitary and periodic waves of the hierarchy for propagation pulse in optical fiber. Optik
**2019**, 194, 163060. [Google Scholar] [CrossRef] - Kudryashov, N.A. On general solutions of two nonlinear ordinary differential equations. AIP Conf. Proc.
**2019**, 2116, 270002. [Google Scholar] - Zhou, Y.; Cai, S.; Liu, Q. Bounded Traveling Waves of the (2+1)-Dimensional Zoomeron Equation. Math. Probl. Eng.
**2015**, 163597, 1–10. [Google Scholar] [CrossRef] - Motsepa, T.; Khalique, C.M.; Gandarias, M.L. Symmetry Analysis and Conservation Laws of the Zoomeron Equation. Symmetry
**2017**, 9, 27. [Google Scholar] [CrossRef] [Green Version] - Liua, S.; Fu, Z.; Liu, S. Exact solutions to sine-Gordon-type equations. Phys. Lett. A
**2006**, 351, 59–63. [Google Scholar] [CrossRef] - Kaur, L.; Wazwaz, A.M. Dynamical Analysis of Lump Solutions for (3+1)-dimensional generalized KP-Boussinesq equation and Its Dimensionally Reduced equations. Phys. Scr.
**2018**, 93, 75–203. [Google Scholar] [CrossRef] - Cheng, L.; Zhang, Y.; Ma, W.X. Pfaffians of B-type Kadomtsev–Petviashvili equation and complexitons to a class of nonlinear partial differential equations in (3++1) dimensions. Pramana
**2019**, 93, 1–10. [Google Scholar] [CrossRef] - Malfliet, W. Solitary wave solutions of nonlinear wave equations. Am. J. Phys.
**1992**, 60, 650–654. [Google Scholar] [CrossRef] - Al-Amr, M.O. Exact solutions of the generalized (2 + 1)-dimensional nonlinear evolution equations via the modified simple equation method. Comput. Math. Appl.
**2014**, 69, 390–397. [Google Scholar] [CrossRef] - Pandey, P.K. Solution of two point boundary value problems, a numerical approach: Parametric difference method. Appl. Math. Nonlinear Sci.
**2018**, 3, 649–658. [Google Scholar] [CrossRef] [Green Version] - Pandey, P.K.; Jaboob, S.S.A. A finite difference method for a numerical solution of elliptic boundary value problems. Appl. Math. Nonlinear Sci.
**2018**, 3, 311–320. [Google Scholar] [CrossRef] [Green Version] - Raslan, K.R.; Evans, D.J. The tanh function method for solving some important non-linear partial differential equations. Int. J. Comput. Math.
**2005**, 82, 897–905. [Google Scholar] - Raslan, K.R.; Ali, K.K.; Shallal, M.A. The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations. Chaos Solitons Fractals
**2017**, 103, 404–409. [Google Scholar] [CrossRef] - Sirendaoreji. New exact travelling wave solutions to three nonlinear evolution equations. Appl. Math. A J. Chin. Univ.
**2004**, 19, 178–186. [Google Scholar] - Zhang, Y.; Pang, J. Lump and Lump-Type Solutions of the Generalized (3+1)-Dimensional Variable -Coefficient B-Type Kadomtsev-Petviashvili Equation. J. Appl. Math.
**2019**, 7172860, 1–10. [Google Scholar] [CrossRef] [Green Version] - Cattani, C.; Sulaiman, T.A.; Baskonus, H.M.; Bulut, H. On the soliton solutions to the Nizhnik-Novikov- Veselov and the Drinfel’d-Sokolov systems. Opt. Quantum Electron.
**2018**, 50, 138. [Google Scholar] [CrossRef] - Zhao, Z.; Han, B. Lump solutions of a (3+1)-dimensional B-type KP equation and its dimensionally reduced equations. Anal. Math. Phys.
**2019**, 9, 119–130. [Google Scholar] [CrossRef] - Pandey, P.K. A new computational algorithm for the solution of second order initial value problems in ordinary differential equations. Appl. Math. Nonlinear Sci.
**2018**, 3, 167–174. [Google Scholar] [CrossRef] [Green Version] - Eskitascioglu, E.I.; Aktas, M.B.; Baskonus, H.M. New Complex and Hyperbolic Forms for Ablowitz-Kaup-Newell-Segur Wave Equation with Fourth Order. Appl. Math. Nonlinear Sci.
**2019**, 4, 105–112. [Google Scholar] - Baskonus, H.M.; Bulut, H.; Sulaiman, T.A. New Complex Hyperbolic Structures to the Lonngren-Wave Equation by Using Sine-Gordon Expansion Method. Appl. Math. Nonlinear Sci.
**2019**, 4, 141–150. [Google Scholar] [CrossRef] [Green Version] - Wazwaz, A.M.; El-Tantawy, S.A. Solving the (3+1)-dimensional KP- Boussinesq and BKP-Boussinesq. Equations by the simplified Hirota’s method. Nonlinear Dyn.
**2017**, 88, 3017–3021. [Google Scholar] [CrossRef] - Deng, Y.S.; Tian, B.; Sun, Y.; Zhang, C.R.; Hu, C. Rational and semi-rational solutions for the (3+1)-dimensional B-type Kadomtsev Petviashvili Boussinesq equation. Mod. Phys. Lett. B
**2019**, 33, 1950296. [Google Scholar] [CrossRef] - Bulut, H.; Baskonus, H.M. New wave behaviors of the system of equations for the ion Sound and Langmuir waves. Waves Random Complex Media
**2016**, 26, 613–625. [Google Scholar] - Baskonus, H.M. New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics. Nonlinear Dyn.
**2016**, 86, 177–183. [Google Scholar] [CrossRef] - Weisstein, E.W. Concise Encyclopedia of Mathematics, 2nd ed.; CRC Press: New York, NY, USA, 2002. [Google Scholar]
- Nguyen, N.T.; Kalisch, H. Orbital stability of negative solitary waves. Math. Comput. Simul.
**2009**, 80, 139–150. [Google Scholar] [CrossRef] [Green Version]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

García Guirao, J.L.; Baskonus, H.M.; Kumar, A.; Rawat, M.S.; Yel, G.
Complex Patterns to the (3+1)-Dimensional B-type Kadomtsev-Petviashvili-Boussinesq Equation. *Symmetry* **2020**, *12*, 17.
https://doi.org/10.3390/sym12010017

**AMA Style**

García Guirao JL, Baskonus HM, Kumar A, Rawat MS, Yel G.
Complex Patterns to the (3+1)-Dimensional B-type Kadomtsev-Petviashvili-Boussinesq Equation. *Symmetry*. 2020; 12(1):17.
https://doi.org/10.3390/sym12010017

**Chicago/Turabian Style**

García Guirao, Juan Luis, H. M. Baskonus, Ajay Kumar, M. S. Rawat, and Gulnur Yel.
2020. "Complex Patterns to the (3+1)-Dimensional B-type Kadomtsev-Petviashvili-Boussinesq Equation" *Symmetry* 12, no. 1: 17.
https://doi.org/10.3390/sym12010017